期刊文献+

一类椭圆型方程的多重解

Multiple Solutions for an Elliptic Equation
下载PDF
导出
摘要 利用极小极大方法获得了一类Dirichlet问题多重解的存在性结果. By using minimax methods, we obtained multiple solutions for a elliptic equation.
出处 《应用泛函分析学报》 CSCD 2007年第2期148-152,共5页 Acta Analysis Functionalis Applicata
基金 天水师院院内项目(TSB0509)
关键词 正解 渐近线性 超线性 DIRICHLET问题 变分法 positive solution asymptotically linear superlinear Dirichlet problem variational method
  • 相关文献

参考文献10

  • 1Amborosetti A, Rablnowitz P H. Dual variational in critical methods in critical theory and application[J]. J Funct Anal, 1973, 14:349--381.
  • 2Brezis H Nirenberg L. Positive solutions of nonlinear ellipitic equation involving critical Sobolev exponents[J]. Comm Pure Appl Math, 1983,36:437--477.
  • 3Stuart C A. Magnetic Field Wave Equations for TM-modes in Nonlinear Optical Waveguides[A]. Caristi Mitidieri(Eds), Reaction Diffusion Systems[C], Marcel Dekker, New york, 1997.
  • 4Stuart C A. Self trapping of an electromagnetic field and bifuraction from the essential specturm[J]. Arch Rat Mech Anal, 1991,113:65--96.
  • 5H S Z. Existence of asymptotically linear Dirichlet problem[J]. Nonlinear Anal, 2001, 44:909--918.
  • 6Liu J Q, Shujie Li. Nontrivial critical points for asymptotically quadratic functions[J]. J Math Anal Appl, 1992, 165: 333--345.
  • 7Chang K C. Solution of asymptotically liner operator equations via Morse theory[J]. Comm, Pure Appl Math, 1981, 34: 693--712.
  • 8Liu J Q, Li S J. An existence theorem for multiple critical points and its application[J]. Kexue Tongbao (Chinese), 1984, 29: 1025--1027. (in Chinese)
  • 9Rabinowitz P H. Minimax Methods in Critical Point Theory with Application to Differitional Equations[A]. CBMs Regional Conference Series in Math, No. 65. American Mathematical Society, Providence, 1986.
  • 10Brezis H, Nirenberg L. Remarks on finding critical points[J]. Comm Pure Appl Math, 1991, 44: 939-- 963.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部