一类椭圆型方程的多重解
Multiple Solutions for an Elliptic Equation
摘要
利用极小极大方法获得了一类Dirichlet问题多重解的存在性结果.
By using minimax methods, we obtained multiple solutions for a elliptic equation.
出处
《应用泛函分析学报》
CSCD
2007年第2期148-152,共5页
Acta Analysis Functionalis Applicata
基金
天水师院院内项目(TSB0509)
关键词
正解
渐近线性
超线性
DIRICHLET问题
变分法
positive solution
asymptotically linear
superlinear
Dirichlet problem
variational method
参考文献10
-
1Amborosetti A, Rablnowitz P H. Dual variational in critical methods in critical theory and application[J]. J Funct Anal, 1973, 14:349--381.
-
2Brezis H Nirenberg L. Positive solutions of nonlinear ellipitic equation involving critical Sobolev exponents[J]. Comm Pure Appl Math, 1983,36:437--477.
-
3Stuart C A. Magnetic Field Wave Equations for TM-modes in Nonlinear Optical Waveguides[A]. Caristi Mitidieri(Eds), Reaction Diffusion Systems[C], Marcel Dekker, New york, 1997.
-
4Stuart C A. Self trapping of an electromagnetic field and bifuraction from the essential specturm[J]. Arch Rat Mech Anal, 1991,113:65--96.
-
5H S Z. Existence of asymptotically linear Dirichlet problem[J]. Nonlinear Anal, 2001, 44:909--918.
-
6Liu J Q, Shujie Li. Nontrivial critical points for asymptotically quadratic functions[J]. J Math Anal Appl, 1992, 165: 333--345.
-
7Chang K C. Solution of asymptotically liner operator equations via Morse theory[J]. Comm, Pure Appl Math, 1981, 34: 693--712.
-
8Liu J Q, Li S J. An existence theorem for multiple critical points and its application[J]. Kexue Tongbao (Chinese), 1984, 29: 1025--1027. (in Chinese)
-
9Rabinowitz P H. Minimax Methods in Critical Point Theory with Application to Differitional Equations[A]. CBMs Regional Conference Series in Math, No. 65. American Mathematical Society, Providence, 1986.
-
10Brezis H, Nirenberg L. Remarks on finding critical points[J]. Comm Pure Appl Math, 1991, 44: 939-- 963.
-
1张翼.具临界指数的拟线性椭圆型方程多重解的存在性[J].杭州大学学报(自然科学版),1995,22(2):139-142.
-
2沈小可,李春.一类p-哈密顿系统无穷多个周期解的存在性[J].西南大学学报(自然科学版),2013,35(2):73-76.
-
3欧增奇,唐春雷.一类半线性椭圆方程解的存在性(英文)[J].西南师范大学学报(自然科学版),2007,32(1):1-5. 被引量:16
-
4武君红,吴行平,唐春雷.一类带有次线性振动非线性项的两点边值问题无穷多个解的存在性[J].西南师范大学学报(自然科学版),2012,37(6):19-23.
-
5钱爱侠.一类Robin边值问题的解的存在性[J].数学学报(中文版),2010,53(6):1081-1086. 被引量:5
-
6陈涛,吴行平.非一致强制的次二次Hamilton系统的周期解(英文)[J].西南大学学报(自然科学版),2008,30(4):20-25.
-
7黎丽,陈凯,张琼芬,刘永建.一类具脉冲效应的p-Laplace系统周期解的存在性[J].数学的实践与认识,2013,43(5):247-256. 被引量:2
-
8胡玲.一类非线性方程组正解的存在性[J].黄山学院学报,2012,40(3):4-5.
-
9陈益健.变分法在二阶非线性差分方程中的应用[J].科技资讯,2007,5(22):147-147.
-
10程永宽,姚仰新,韩亚蝶.一类含Hardy位势的椭圆方程解的存在性[J].山东大学学报(理学版),2013,48(2):62-66. 被引量:2