摘要
讨论一类具有预防免疫接种且有效接触率依赖于总人口的SIR传染病模型,给出了决定疾病灭绝和持续生存的基本再生数σ的表达式,在一定条件下证明了疾病消除平衡点的全局稳定性,得到了唯一地方病平衡点的存在性和局部渐近稳定性条件.最后研究了具有双线性传染率和标准传染率的两个具体模型,并证明了当σ>1时该模型地方病平衡点的全局渐近稳定性.
The stability of SIR epidemic model with vaccinal immunity and a varying total population size is studied. The basic reproductive number a is found which determines the existence of infective disease. In some conditions, we demonstrate that the disease free equilibrium is globally stable. The existence of a unique endemic equilibrium and the condition of local asymptotic stability are obtained. For the important cases of bilinear and standard incidence of infection, global asymptotic stability of the endemic equilibrium are proved provided the basic reproduction number is more than unity.
出处
《应用泛函分析学报》
CSCD
2007年第2期169-175,共7页
Acta Analysis Functionalis Applicata
基金
江西省自然科学基金(0611084)
关键词
数学模型
传染病
预防接种
基本再生数
地方病平衡点
全局稳定性
mathematical model
infectious disease
vaccination
basic reproductive number
endemic equilibrium
global stability