期刊文献+

具有免疫接种且总人口规模变化的SIR传染病模型的稳定性 被引量:7

Stability of an SIR Epidemic Model with Vaccinal Immunity and a Varying Total Population Size
下载PDF
导出
摘要 讨论一类具有预防免疫接种且有效接触率依赖于总人口的SIR传染病模型,给出了决定疾病灭绝和持续生存的基本再生数σ的表达式,在一定条件下证明了疾病消除平衡点的全局稳定性,得到了唯一地方病平衡点的存在性和局部渐近稳定性条件.最后研究了具有双线性传染率和标准传染率的两个具体模型,并证明了当σ>1时该模型地方病平衡点的全局渐近稳定性. The stability of SIR epidemic model with vaccinal immunity and a varying total population size is studied. The basic reproductive number a is found which determines the existence of infective disease. In some conditions, we demonstrate that the disease free equilibrium is globally stable. The existence of a unique endemic equilibrium and the condition of local asymptotic stability are obtained. For the important cases of bilinear and standard incidence of infection, global asymptotic stability of the endemic equilibrium are proved provided the basic reproduction number is more than unity.
作者 薛颖 熊佐亮
机构地区 南昌大学数学系
出处 《应用泛函分析学报》 CSCD 2007年第2期169-175,共7页 Acta Analysis Functionalis Applicata
基金 江西省自然科学基金(0611084)
关键词 数学模型 传染病 预防接种 基本再生数 地方病平衡点 全局稳定性 mathematical model infectious disease vaccination basic reproductive number endemic equilibrium global stability
  • 相关文献

参考文献6

二级参考文献12

  • 1徐文雄,CarlosCastillo-Chavez.一个积分-微分方程模型解的存在唯一性(英文)[J].工程数学学报,1998,15(2):108-112. 被引量:9
  • 2Kermack W O, McKendrick A G. Contributions to the matlhematical theory of epidemics-Part 1[J].Proc RoySoc London Ser A, 1927,115(3) :700-721.
  • 3Mena-Lorca J, Hethcote H W. Dynamic models of infectious diseases as regulators of population sizes[J]. J Math Biol, 1992,30(4):693-716.
  • 4Li J, Ma Z. Qualitative analysis of SIS epidemic model with vaccination and varying total population size[J]. Math Comput Modelling ,2002,35(11/12) :1235-1243.
  • 5Heesterbeck J A P, Metz J A J. The saturating contact rate in marriage-and epidemic models[ J]. J Math Biol, 1993,31(2) :529-539.
  • 6Brauer F, Van den Driessche P. Models for transmission of disease with immigration of infectives[ J].Math Biosci, 2001,171(2): 143-154.
  • 7Han L,Ma Z,Hethcote H W. Four predator prey models with infectious diseases[J]. Math Comput Modelling, 2001,34(7/8): 849-858.
  • 8LaSalle J P. The Stability of DynamicalSystem [ M]. New York: Academic Press, 1976.
  • 9Jeffries C, Klee V, Van den Driessche P. When is a matrix sign stable? [ J]. Canad J Math, 1977,29(2) :315-326.
  • 10原三领,蒋里强.一类具有非线性饱和传染力的传染病模型[J].工程数学学报,2001,18(4):98-102. 被引量:20

共引文献83

同被引文献65

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部