期刊文献+

基于时频分析的战场声信号主成分特征提取技术 被引量:1

Principal component feature extraction technology based on time-frequency analysis for battlefield acoustics signal
下载PDF
导出
摘要 信号的时频分布描述了信号从时域到频域的变换,较为全面地表征了信号的特征。主成分分析是统计学中分析数据的一种有效方法。本文将时频分析的方法应用于声目标的特征提取及分类;在保证信息的相对完整性的基础上,利用基于时频分析的主成分特征提取技术对4类战场目标的声信号进行了特征提取。经仿真实验验证,信号的时频分布较好地体现了各类声目标在时-频域的分布规律,主成分分析方法有效地压缩了数据量。结果表明,各目标的类间可分性测度值较大,具有良好的可分性。 The time-frequency distribution of signal can depict the exchange from time to frequency domain for signal, and it can represent the characteristic of signal entirely. Principal component analysis (PCA) is a kind of effective method in statistics. This paper presented analysis on the feature extraction of the battlefield acoustics using principal component analysis (PCA), based on time-frequency distribution. The acoustic data was field data taken from four kinds of battlefield targets, and the signals in battlefield acoustics were extracted in the method mentioned above. Simulation experiment indicated that the time-frequency distribution of the signal can exhibit the distribution principle of all kinds of acoustics targets. The experiment results indicate that the PCA can reduce the data volume and the four kinds of targets can be well distinguished.
作者 康缘 李京华
出处 《电子测量技术》 2007年第5期4-7,共4页 Electronic Measurement Technology
基金 国防重点实验室预研基金(51454070204HK0320) 西北工业大学科技创新基金(2003CR080001)资助项目
关键词 时频分析 主成分分析(PCA) 特征提取 可分性测度 time-frequency analysis principal component analysis feature extraction class separability measurement
  • 相关文献

参考文献5

二级参考文献17

  • 1赵松年 熊小芸.子波变换与子波分析[M].北京:电子工业出版社,1997..
  • 2张贤达 保铮.非平稳信号分析与处理[M].国防工业出版社,1999,7.324-352.
  • 3崔锦泰著. 程正兴译.小波分析导论[M].西安: 西安交通大学出版社,1995..
  • 4宗孔德 胡广书.数字信号处理[M].清华大学出版社,1990.210-213.
  • 5Tian Yuxin,Qi Hairong.Target detection and classification using seismic signal processing in unattended ground sensor systems[A].Acoustics,Speech,and Signal Processing,2002.Proceedings.(ICASSP '02) [C].IEEE International Conference on,2002,4:4172.
  • 6Wu Huadong,Mel Siegel.Vehicle sound signature recognition by frequency vector principal component analysis[J].IEEE Transaction on Instrumentation and Measurement,1999,48(5):1005-1009.
  • 7Yuri Romanyshyn, Wavelet Transforms Applications for Speech Signals Processing CADSM * 2001 Proceedings, Pages: 297 298.
  • 8边肇祺 张学工 等.模式识别[M].北京:清华大学出版社,2001..
  • 9焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 10皇埔堪,陈建文,楼生强.现代数字信号处理[M].北京:电子工业出版社,1988:176—191.

共引文献34

同被引文献8

  • 1祝龙石,庄志洪,张清泰,等.战场声目标噪声特性分析[J].现代引信,1996(2):57-61.
  • 2Siegel M W,Khosla P,Wu H D. Vehicle sound signature recognition by frequency vector principal component analysis[J]. Transactions on Instrumentation and Measurement, 1999,48 (5) : 1005 - 1009.
  • 3Park H O, Dibazar A A, Berger T W. Protecting military perimeters from approaching human and vehicle using biologically realistic dy- namic synapse neural network [ C ] // 2008 IEEE Conference on Technologies for Homeland Security. Waltham : IEEE, 2008 : 73 - 78.
  • 4Zhu W,Jin P, Wang J,et al. Vehicle targets classification by a- coustic signal[ C ] //2010 2nd International Conference on Infor- mation Science and Engineering. Hangzhou : IEEE,2010:5520 - 5523.
  • 5Bormann P. New manual of seismological observatory practice [ M ]. Germany : Volcano Seismology,2002.
  • 6伍宗富,杨如曙,李晓峰.基于知识的声目标探测识别系统[J].计算机测量与控制,2010,18(5):1132-1135. 被引量:2
  • 7段汉卿,周思玥.强噪声背景下车辆震动信号检测算法研究[J].无线电工程,2012,42(12):51-54. 被引量:6
  • 8栗苹,刘宁,宿晶亮,郑雪冰.战场目标声信号的合成方法研究[J].探测与控制学报,2002,24(1):29-32. 被引量:5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部