摘要
针对产品适应性设计或变型设计早期阶段难以进行精确成本估算的特点,提出大样本条件下基于“成本聚类”的成本估算模型。通过计算参考样本和待估算产品的欧氏距离考察二者的相似度,以欧氏距离集为初始数据分别构造差异矩阵、距离矩阵和相似矩阵,实现对样本的成本聚类分析过程,最终筛选出与待估算产品最相关的样本集合,得到待估算产品成本可能落入的区间。以液压盘式制动器的制动盘零件为实例,验证方法的有效性。试验结果表明,该模型能够有效区分估算样本的相对优劣。
A cost estimation model based on cost cluster is presented with big samples in early product design phase because precise cost estimation in early adptive or derivative product design phase is very difficult. Euclidean distance between samples and estimating product are calculated to express their similarity. Difference matrix, distance matrix and similarity matrix are built base on euclidean distance sets between samples and indeterminate estimation product, then most correlated sample sets are selected to get interval of estimated cost based on cost cluster analysis. An example of brake disc shows invalidity of the cost cluster model. The result of experiment proved that cost cluster model was able to separate relative order of qulity of the samples.
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2007年第6期205-209,共5页
Journal of Mechanical Engineering
基金
浙江省自然科学基金(Y105207)
国家自然科学基金(50305034)资助项目
关键词
成本聚类
成本区间
欧氏距离
灰色模糊聚类
Cost cluster Cost interval Euclidean distance Gray fuzzy cluster