期刊文献+

具有连续红利的幂型欧式期权定价 被引量:4

The Pricing of Power Payoffs European Options with Continuous Dividend
原文传递
导出
摘要 在等价鞅测度框架下,讨论了在期权到期时刻具有连续红利支付的幂型股票欧式期权的定价公式.这里我们假设市场无风险利率,股票预期收益率,股价波动率以及股票红利率都是时间的确定性函数. Under the framework of equivalent martingale measures, we discuss the pricing formulas of power payoffs European options with continuous dividend at the time of maturity of the options. Here, we assume that the risk-free rate of interest, the expected rate of return, the volatility for the stock price and the dividend of the stock price are deterministic functions of the time.
作者 白斐斐 师恪
出处 《数学的实践与认识》 CSCD 北大核心 2007年第12期33-36,共4页 Mathematics in Practice and Theory
关键词 幂型欧式期权 股价 等价鞅测度 连续红利 power payoffs european options stock price equivalent martingale measures continuous dividend
  • 相关文献

参考文献5

二级参考文献21

  • 1Oksendal O. A Short Introduction to Mathematical Finance[M]. Preprints, Dept of Mathematics, University of Oslo, Norway.
  • 2Ross S M. An Elementary Introduction to Mathematical Finance, (second ed. )[M]. Cambridge University Press,2003.
  • 3Hull J C. Options, Futures, and Other Derivatives, (第4版)[M].北京:清华大学出版社,2001.
  • 4Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy[J],1973;81 (3) :637-654
  • 5Merton M C. Continuous-Time Finance[M]. Blackwell Publishers, Cambridge M A, 1990
  • 6Martin Schweizer. Option heading for semimartingales[J]. Stochastic processes and their Applications,1991 ;37(3) :339-360
  • 7Chan T. Pricing contingent claims on stocks driven by Levy processes[J]. Annals of Appl Prob,1999;9(2) :504-528
  • 8Jan Kallsen. Optimal portfolios for exponential Levy processes[J]. Math Meth Oper Res, 2000;51(3):357-374
  • 9Jean-Luc Prigent. Option Pricing with a general marked point process[J]. Mathematics of Operations Research, 2001;26(1):50-66
  • 10Cox J C, Roos S A, Rubinstein M. 1979. Option pricing: A simplified approach[J]. Journal of Economics,1979; 7(3):229-263

共引文献52

同被引文献24

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部