摘要
首先从符号动力学的角度论证了一簇Lorenz映射且有的混沌性质:稠密的周期轨道,周期的集合,拓扑熵,几乎所有(关于Lebesgue测度)的点的Lyapunov指数;并从揉序列的分析给出了该簇映射的拓扑熵的一个下界及Lyapunov指数的一个下界与上界,在很大程度上反应了Lorenz系统的复杂程度.其次仍从符号动力学的角度论证了更一般的Lorenz映射,通过设立参数空间,穷尽了Lorenz映射中函数为直线段的所有情况,并得出同前述Lorenz映射相似的且较为复杂的性质.
At first, the paper gives proof to some chaotic properties which characterize a family of Lorenzmaps. The properties include dense periodic obits, set of periodicals, positive topological entropy and positive local Lyapunov exponent for almost points. The theorems give a lower bound for the topological entropy and both the lower and upper bounds for the local Lyapunov exponent which virtually characterizes the complexity of a nonlinear dynamic system. The process of proof quite simplifies the one by topology. Then in a broad sense the paper studies a more general family of Lorenz maps consisting only of lines by ranging the parameter in the parameter space and finally similar properties to the above Lorenz maps are also resulted.
出处
《数学的实践与认识》
CSCD
北大核心
2007年第12期173-178,共6页
Mathematics in Practice and Theory