期刊文献+

一簇Lorenz映射的混沌行为的符号动力学分析

Analyzing the Chaotic Behavior of a Family of Lorenz Maps by Symbolic Dynamics
原文传递
导出
摘要 首先从符号动力学的角度论证了一簇Lorenz映射且有的混沌性质:稠密的周期轨道,周期的集合,拓扑熵,几乎所有(关于Lebesgue测度)的点的Lyapunov指数;并从揉序列的分析给出了该簇映射的拓扑熵的一个下界及Lyapunov指数的一个下界与上界,在很大程度上反应了Lorenz系统的复杂程度.其次仍从符号动力学的角度论证了更一般的Lorenz映射,通过设立参数空间,穷尽了Lorenz映射中函数为直线段的所有情况,并得出同前述Lorenz映射相似的且较为复杂的性质. At first, the paper gives proof to some chaotic properties which characterize a family of Lorenzmaps. The properties include dense periodic obits, set of periodicals, positive topological entropy and positive local Lyapunov exponent for almost points. The theorems give a lower bound for the topological entropy and both the lower and upper bounds for the local Lyapunov exponent which virtually characterizes the complexity of a nonlinear dynamic system. The process of proof quite simplifies the one by topology. Then in a broad sense the paper studies a more general family of Lorenz maps consisting only of lines by ranging the parameter in the parameter space and finally similar properties to the above Lorenz maps are also resulted.
作者 王福来
出处 《数学的实践与认识》 CSCD 北大核心 2007年第12期173-178,共6页 Mathematics in Practice and Theory
关键词 LORENZ映射 符号动力系统 混沌 LYAPUNOV指数 拓扑熵 Lorenzmaps symbolic dynamics chaos local Lyapunov exponent topologicalentropy
  • 相关文献

参考文献12

  • 1Zheng Weimou, Hao Bolin. Practical Symbolic Dynamics[M]. Shanghai: Shanghai Science and Technology Educational Press, 1994.67--90.
  • 2Ding Yiming. Fan Wentao. The chaotic behavior and statistically stable behavior of a family of lorenz maps[J]. Aeta Mathematica Scientia.2001,21A(4) :559--569.
  • 3Hao Bolin. Chaotic Dynamics from Parabolic Curve[M]. Shanghai: Shanghai Science and Technology Educational Press, 1993.20-32.
  • 4Zhou Zuoling. Symbolic Dynamics[M]. Shanghai: Shanghai Science and Technology Educational Press. 1997.7-- 88.
  • 5Min Qi. Zhang Qiugyou. The study on the symbolic dynamics of Lorenz map[J].Journal of Yunnan Normal University Engineering Science.2002.22(4):53--57.
  • 6Chen Z X, Cao K F. Peng S L. Symbolic dynamics analysis of topological entropy and its multifractal structure[J].Phys Rev E. 199.5,51 (2) : 1983--1987.
  • 7Min Qi. Chen Zhongxuan. The skills on calculating topological entropy of lorenz maps[J]. Journal of Yunnan University Engineering Science,2001,23(1):24--26.
  • 8Peng S L, Du L M. Dual star products and symbolic dynamics of lorenz maps with the same entropy[J]. Phys Lett A.1999.261(4):63-66.
  • 9Wang Fulai. An improvement on the conditions of generalized Taylor map and Henon map containing chaos[J].Advances in Mat hematics, 2004,33 (4) : 591--597.
  • 10Hang Runsheng. Chaos and Its Applieation[M]. Wuhan: Wuhan University Press,2000. 270--275.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部