期刊文献+

基于粗集约简的Fuzzy ART设备状态监测方法

Monitoring Method of Fuzzy ART Equipment Condition Based on Rough Set Attribute Reduction
下载PDF
导出
摘要 针对复杂设备系统的多工况状态监测问题,提出一种基于粗集属性约简的FuzzyART神经网络状态监测方法。该方法利用粗集的信息决策表和决策矩阵对系统的监测参数进行约简提取,降低FuzzyART输入向量的维数。实例测试结果表明,采用粗集约简提取的监测向量与原监测向量具有相同的监测能力,且提高了网络的学习效率。 A new monitoring method based on Fuzzy ART neural network of rough set reduction is presented aiming at the existing problems in state monitoring for a complex system under multiple loading eases. The method uses rough information deeision-making form and decision-making matrix to choose monitoring parameters for the system, thus can effectively reduce the dimension of Fuzzy ART input vectors. The test result proves that the monitoring vector selected by rough reduction has the same monitoring capability with the original monitoring vector; therefore, network efficiency is improved.
出处 《东北林业大学学报》 CAS CSCD 北大核心 2007年第6期99-101,共3页 Journal of Northeast Forestry University
基金 黑龙江省教育厅科学技术研究项目(11511099) 黑龙江省自然科学基金项目(E200615)
关键词 粗糙集 FUZZY ART 复杂设备 状态监测 Rough set Fuzzy ART Complex equipment Condition monitoring
  • 相关文献

参考文献2

二级参考文献14

  • 1王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 2Garpenter G A, Grossberg S, Rosen D B. Fuzzy ART: Fast stable learning and categorization of analog pattern by an adaptive resonance system[J]. Neural Networks, 1991, 4(9) :759 - 771.
  • 3Garpenter G A, Stephen Grossberg and Markuzon N. Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multi-dimensional maps[ J]. IEEE trans on Neural Network. 1992, 3 (5): 698- 712.
  • 4Frank T, et al. Comparative analysis of fuzzy ART and ART - 2A network clustering performance[J]. IEEE Trans on Neural Networks,1998, 9(3): 544- 559.
  • 5曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 6Pawlak Z. Rough Sets[J]. International Journal of Computer and Information Sciences, 1982,11:341-356.
  • 7Pawlak Z. Decision Table Computer[J]. Bulletin of the Polish Academy of Sciences Technical Sciences,1986,34(10):591-595.
  • 8Pawlak Z. On Superfluous Attributes in Knowledge Representation System[J]. Bulletin of the Polish Academyof Sciences Technical Sciences,1984,32(3).211-213.
  • 9Pawlak Z. On Rough Dependency of attributes in Information Systems[J]. Bulletin of the Polish Academy ofSciences Technical Sciences,1985,33(9):481-485.
  • 10刘清,黄兆华,姚力文.Rough集理论:现状与前景[J].计算机科学,1997,24(4):1-5. 被引量:34

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部