摘要
设F(p,q)和G(p,q)在无穷远点的邻域内是分别关于p和q的近似凸函数,且具有二次增长.考虑由F和G构成的一对定义在Soblev空间中的泛函.本文利用blowup技巧,证明了这样一对泛函的Nash平衡点实际上是Lipschitz连续的.
We study a kind of coupled functionals defined in a vector-valued SobolevSpace by a function F(p, q) which is convex and has square growth in p and a function G(p, q)which is convex and has square growth in q. By the use of the blow-up technique, we provethat the Nash equilibrium for these coupled functionals is Lipschitz continuous.
出处
《系统科学与数学》
CSCD
北大核心
1997年第2期97-102,共6页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金
关键词
多重积分
NASH平衡点
李普希兹估计
泛函
Variational integrals, Nash equilibrium, Lipschitz estimate, blow-up technique.