摘要
本文首先用积分型线性正算子实现了C([-π,π]m×[-α,α]k)上多元代数与三角多项式的混合逼近.进而,通过构造更具体的乘积核,还得到了C([-π,π]m)上三角逼近的。维Rogosinski型逼近定理及Cr([-1,1]k)上k维代数多项式逼近的Timan型定理.
This paper realizes first the multivariate algebraic and triangular polynomial approximations on C([-π, π]m × [-a, a]k) with some general integral-type positive linearoperator. Then constructing certain specific product kernels, we have obtained the Rogosinskitype theorem of m-dimensional triangular approximation on C([-π, π]m, and the Timan-typetheorem of k-dimensional algebraic polynomial approximation on Cr([-1, 1]k).
出处
《系统科学与数学》
CSCD
北大核心
1997年第2期186-192,共7页
Journal of Systems Science and Mathematical Sciences
关键词
连续模
多元多项式逼近
函数逼近
多项式逼近
C-norm approximation, pointwise approximation, continuous module, secondorder continuous module.