期刊文献+

B值鞅遍历定理与极大不等式

B-Valued Martingale Ergodic Theorems and Maximal Inequalities
下载PDF
导出
摘要 研究一类具有较强物理背景的B值鞅遍历过程.利用Doob上穿不等式,证明了其取值的Banach空间具有RN(Radon-Nikodym)性质时这类随机过程的收敛性.对于像空间为p-可光滑Banach空间的情况,综合利用鞅极大不等式和遍历极大不等式,证明了鞅遍历过程的一些极大不等式. In this paper, a type of B-valued martingale ergodic process that has strong meanings in physical settings is introduced and studied. When the image space has RN(Radon-Nikodym) property, by using the up-crossing inequality of Doob,it is proved that this process converges both a. e. and in L^p norm. By combining the maximal inequality of martingales and ergodic maximal inequality, the maximal inequality for this process is also obtained when the Banach space is p-smoothable.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2007年第3期255-258,共4页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金资助项目(10371093)
关键词 B值鞅遍历过程 收敛性 极大不等式 B-valued martingale ergodic processes convergence maximal inequalities
  • 相关文献

参考文献8

  • 1Doob J L.Stochastic Processes[M].New York:Wiley,1953.
  • 2Stroock D.Probability Theory,an Analytic View[M].Cambridge:Cambridge Univ Press,1993.
  • 3Goubran N.Pointwise Inequalities for Ergodic Averages and Reversed Martingales[J].J Math Anal Appl,2004,290:10-20.
  • 4Krengel U.Ergodic Theorems[M].Berlin:de Gruyter,1985.
  • 5Prigogine I,Stengers I.Order from Chaos[M].Moscow:Progress,1986.
  • 6Long Ruilin.Martingale Spaces and Inequalities[M].Beijing:Peking University Press,1993.
  • 7Petersen K.Ergodic Theory[M].Cambridge:Cambridge Univ Press,1983.
  • 8Walters P.An Introduction to Ergodic Theory[M].Berlin:Springer-Verlag,1982.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部