期刊文献+

支持向量分类机阈值的唯一化

The Unique of Threshold for Support Vector Classifiers
下载PDF
导出
摘要 支持向量分类机是数据挖掘的新方法,它对应于一个凸二次规划,该规划的不唯一解带来阈值不唯一问题。针对阈值不唯一问题,研究了在具体应用过程中如何修改模型参数,在不影响具体应用问题解决的前提下,提出使阈值唯一化的一个解决方法,同时给出参数变化后最优解的理论结果。这种唯一化的方法不仅为支持向量分类机数据扰动分析新的研究方向作基础准备,而且可以克服由不唯一阈值构成的多决策函数在实际应用问题中带来的困扰。 Support Vector Classifiers (SVC) is a new method for data mining. It is equal to a quadratic optimal problem. The various solutions cause the non-uniqueness of threshold problem. A method which can make the threshold uniqueness without changing the primal applied model is introduced. In addition, this paper establishes theory for the threshold uniqueness. The theory is a foundation for SVC perturbation analysis field. In addition, the methods can be applied to solve the trouble of many decision functions.
作者 蔡春 邓乃扬
出处 《北京联合大学学报》 CAS 2007年第2期15-18,共4页 Journal of Beijing Union University
基金 国家自然科学基金资助项目(10371131)
关键词 支持向量分类机 数据挖掘 阈值 support vector classifier data mining threshold
  • 相关文献

参考文献3

二级参考文献32

  • 1王建成.我国宏观经济预警系统的预警方法研究:[学位论文].杭州:浙江大学,1999
  • 2Schlkopf S, Burges C J C, Smola A J. Advances in Kernel Methods: Support Vector Leaming. Cambridge: MIT Press, 1999.43~45
  • 3Cristianini N, Shawe-Taylor J. Introduction to Support Vector Machines. Cambridge: Cambridge University Press, 2000.52~76
  • 4Weston J, Elisseeff A, Schlkopf B. Use of the lo-norm with linear models and kernel methods. BIOWulf Technical Report, 2001.12p
  • 5Chapelle O, Vapnik V, Bousquet O, et al. Choosing kernel parameters for support vector machines. Machine Learning, http:∥citeseer. nj.nec.com/384397.html,2000
  • 6Weston J, Mukherjee S, Chapelle O, et al. Feature selection for svms. Advances in Neural Information Processing Systems, http:∥citeseer. nj.nec.com/326502.html,2000
  • 7VapnikV 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 8U.Krebel,"Pairwise classification and support vector machines ",in:B.Scholkopf,C.J.C.Burges and A.J.Smola (Eds.),Advances in Kernel Methods:Support Vector Learning,MIT Press,Cambridge,MA,1999,pp.255-268.
  • 9E.L.Allwein,R.E.Schapire and Y.Singer,"Reducing multiclass to binary:A unifying approach for margin classifiers",Journal of Machine Learning Research,2001(1),113-141.
  • 10T.G.Dietterich and G.Bakiri,"Solving multi-class learning problems via error-correcting output codes",Journal of Artificial Intelligence Research,1995(2),263-286.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部