期刊文献+

二阶非线性阻尼差分方程的振动性 被引量:1

Oscillations of Second Order Nonlinear Difference Equations with Damping Term
下载PDF
导出
摘要 研究一类带有负的或振动阻尼项的二阶非线性差分方程,利用分部差分法以及差分不等式,建立该类方程振动的一个新准则,推广了文献[1]~[3]的结果. A kind of second order nonlinear difference equation with negative on vibration damping is studied. By using the method of difference and difference inequality, a new departmental oscillatory criterion for the equation is given, the research generalizes the results in [ 1--3].
出处 《延边大学学报(自然科学版)》 CAS 2007年第2期83-85,共3页 Journal of Yanbian University(Natural Science Edition)
关键词 阻尼差分方程 振动 充分条件 difference equation with damping oscillation sufficient condition
  • 相关文献

参考文献4

  • 1[1]Hooker J W,Patula W T.A Second Order Nonlinear Difference Equation:Oscillation and Asymptotic Behavior[J].Math Appl,1983(91):9-24.
  • 2[2]Grace S R,Lalli B S.Oscillation Behavior of Nonlinear Second Order Differential Equations with Deviating Arguments[J].Bull Inst Math Acad Sinca,1986(14):187-196.
  • 3[3]SVZmanda B.Oscillation Criteria for Second Order Nonlinear Difference Equations[J].Ann Polon Math,1983(43):225-235.
  • 4[4]Naito M.Oscillation Theorems for a Damped Nonlinear Differentiac Equations[J].Proc Japan Acd,1974(50):104-108.

同被引文献6

  • 1侯成敏,何延生,俞元洪.带有非线性阻尼项的二阶非线性差分方程的振动性[J].Journal of Mathematical Research and Exposition,2005,25(4):721-726. 被引量:2
  • 2Zhang Z G, Bi P. Linear oscillation of second - order nonlinear difference equations with damped term[ J]. Comput Math Appl,2001,41:659 -667.
  • 3Medina R. The asymptotic behavior of the solution of a Volterra difference equation[ J]. Computers Math Appl, 1997,34( 1 ) : 19 - 26.
  • 4Li W T, Fan X L. Oscillation criteria for second - order nonlinear difference equations with damped term [ J ]. Computers Math Appl, 1999,37(6) :17 -30.
  • 5Tadas G, Philos Ch C, Sficas Y G. Necessary and sufficient conditions for the oscillation of difference equations[ J]. Tibertas Math,1989 ,9 :15 -21.
  • 6HOOKER J W, PATULA W T. A second order nonlinear difference equation: Oscillation and asymptotic behavior [J]. J Math Anal Appl, 1983,91:9 - 24.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部