期刊文献+

海森堡型群上粘性解的存在性和唯一性

Existence and uniqueness of viscosity solutions in groups of the Heisenberg type
下载PDF
导出
摘要 研究了海森堡型群G上方程H(p,u(p),Du(p))=0,p∈G有界粘性解的存在性和唯一性理论.存在性的证明用Perron方法来完成,针对一特殊方程给出了粘性解的唯一性,这里日:G×R×Rm→R满足适当的条件,Du表示u在海森堡型群意义下的水平梯度. In this paper the existence and uniqueness of bounded viscosity solutions of equution H(p, u(p), Du(p)) = 0 on groups of Heisenberg type G are studied. Existence is proved by the Perron's method and, to a special equation, uniqueness is proved. Where H : G ×]R × R^m→R satisfies certain conditions, Du denotes the horizontal gradient of u on groups in terms of Heisenberg type.
作者 贾化冰 徐伟
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第3期121-126,共6页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金(10472091 10332030) 陕西省自然科学基金(2003A03)资助项目.
关键词 海森堡型群 粘性解 存在性 唯一性 groups of Heisenberg type viscosity solution existence uniqueness
  • 相关文献

参考文献15

  • 1CRANDALL M G,LIONS P L.Viscosity solutions of Hamilton-Jacobi equations[J].Trans Amer Math Soc,1983,277(1):1-42.
  • 2CRANDALL M G,EVANS C,LIONS P L.Some properties of viscosity solutions of Hamilton-Jacobi equations[J].Trans Amer Math Soc,1984,282(2):487-502.
  • 3SOUGANIDIS P E.Existence of viscosity solutions of Hamilton-Jacobi equations[J].J Diff Equations,1985,56(3):345-390.
  • 4CRANDALL M G,ISHII H,LIONS P L.User's guide to viscosity solutions of second order partial differential equations[J].Bull Amer Math Soc,1992,27(1):1-67.
  • 5CRANDALL M G,LIONS P L.Hamilton-Jacobi equations in infinite dimensions Ⅰ:Uniqueness of viscosity solutions[J].J Functional Analysis,1985,62(3):379-396.
  • 6CRANDALL M G,LIONS P L.Hamilton-Jacobi equations in infinite dimensions Ⅱ:Existence of viscosity solutions[J].J Functional Analysis,1986,65(3):368-405.
  • 7BARDI M,CAPUZZO Dolcetta I.Optimal Control and Viscosity Solution of Hamilton-Jacobi-Bellman Equations[M].Boston:Birkh(a)user,1997.
  • 8BARDI M,CRANDALL M G,EVANS L C,et al.Viscosity Solutions and Applications[M].Berlin:Spring Verlag,1997.
  • 9MANFREDI J J,STROFFOLINI B.A version of the Hopf-Lax formula in the Heisenberg group[J].Comm in P D E,2002,27(5 & 6):1 139-1 159.
  • 10GAROFALO N,VASSILEV D.Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot groups[J].Math Ann,2000,318:453-516.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部