期刊文献+

基于Robin界面条件的非重叠区域分解法

A Nonoverlapping Domain Decomposition Method Based on Robin Transmission Conditions
下载PDF
导出
摘要 描述了一个Neumann模型问题,分析其基于Robin边界条件的非重叠型加性区域分解法.在使用可变参数循环的情况下,给出了算法的微分和有限元离散两种形式及其收敛性质.数值结果表明,适当选取Robin参数,可大大加快算法的收敛速度. We described a nonoverlapping additive domain decomposition method based on Robin transmission conditions for a Neumann model problem. The method was described for the cases of differential form and the mixed finite dement discretization form with variable Robin parameters cycle. Convergence of the method was discussed. Numerical results imply that suitable Robin parameter can accelerate the convergence rate dramatically.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第6期82-84,共3页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(10371035)
关键词 Neumann模型 Robin边界条件 加性算法 区域分解法 Neumann model Robin transmission condition additive algorithm domain decomposition
  • 相关文献

参考文献7

  • 1LIONS P L, On the Schwarz alternating method Ⅲ: a variant for nonoverlapping subdomains [ C ]//CHAN T. Third International Symposium on Domain decomposition methods for partial differential equations. SIAM, Philadelphia, 1990 :202 - 223.
  • 2DOUGLAS J J, HUANG C S. An accelerated domain decomposition procedure based on Robin transmission conditions[J ]. BIT, 1997, 37:678 - 686.
  • 3DOUGLAS J J, PAES- LEME P J, ROBERTS J E, WANG J. A parallel iterative procedure applicable to the approximate solution of second order partial differential equations by mixed finite dement methods[J]. Numer Math, 1993, 65 : 95 - 108.
  • 4DOUGLAS J J, HUANG C S. Accelerated domain decomposition iterative procedures for mixed methods based on Robin transmission conditions[J]. Calcolo, 1998, 35:131- 147.
  • 5李宏伟.椭圆型偏微分方程的加法Schwarz方法[J].数值计算与计算机应用,2003,24(1):44-52. 被引量:1
  • 6ARNOLD D N,BREZZI F.Mixed and nonconforming finite element methods:implementation,postprocessing and error extimates[J].RAIRO Model Math Anal Numer,1985, 19: 7- 32.
  • 7RAVIART P A, THOMAS J M. A mixed finite element method for 2nd order elliptic problem[C]//GALLIGANI L. Mathematical aspects of finite dement methods, Lecture Notes in Math. Berlin: Springer, 1977: 292-31.

二级参考文献7

  • 1[1]F. Nataf, F. Rogier. Factorization of the convection-diffusion operator and the Schwarz algorithm.M3AS, 5:1(1995), 67-93.
  • 2[2]F. Nataf, Absorbing Boundary Conditions in Block Gauss-Seidel Methods for the Convection Problems, M3AS, 6, n°4, (1996), 481-502.
  • 3[3]Wei Pai Tang, Generalized Schwarz splittings. SIAM J. Sci. Stat. Comp., 13:2(1992), 573-595.
  • 4[4]Martin J. Gander, Laurence Halpern and Frederic Nataf. Optimized Schwarz Methods, in preparation. http://www. math. mcgill. ca /mgander/research/ domaindecomposition/ D Dproc. ps. gz
  • 5[5]F.NATAF, On the Use of Open Boundary Conditions in Block Gauss-Seidel Methods for the Convection-Diffusion Equation.
  • 6[6]Li Hongwei, The Optimal parameter of Robin transmission condition. Proceedings of the Sixth National Parallel Computing Conference, 2000.
  • 7[7]Maksymilian Dryja, Olof B. Widlund, Domain Decomposition Algorithms with Small Overlap,SIAM J. Sci. Stat. Comput., 15:3, May (1994), 604-620.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部