摘要
描述了一个Neumann模型问题,分析其基于Robin边界条件的非重叠型加性区域分解法.在使用可变参数循环的情况下,给出了算法的微分和有限元离散两种形式及其收敛性质.数值结果表明,适当选取Robin参数,可大大加快算法的收敛速度.
We described a nonoverlapping additive domain decomposition method based on Robin transmission conditions for a Neumann model problem. The method was described for the cases of differential form and the mixed finite dement discretization form with variable Robin parameters cycle. Convergence of the method was discussed. Numerical results imply that suitable Robin parameter can accelerate the convergence rate dramatically.
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2007年第6期82-84,共3页
Journal of Hunan University:Natural Sciences
基金
国家自然科学基金资助项目(10371035)