期刊文献+

基于支持向量机的葡萄病害图像识别方法 被引量:84

Method for recognition of grape disease based on support vector machine
下载PDF
导出
摘要 应用计算机图像处理技术和支持向量机识别方法研究了葡萄叶部病害的识别,以提高识别的准确性和效率。首先对采集到的葡萄病害彩色图像采用矢量中值滤波法去除噪声,然后采用统计模式识别方法和数学形态学对病叶图像进行了分割。最后提取了葡萄病叶彩色图像的纹理特征、病斑的形状特征和颜色特征,并用支持向量机的模式识别方法来识别葡萄病害。试验结果表明:支持向量机识别方法能获得比神经网络方法更好的识别性能;综合形状特征和纹理特征的支持向量机识别方法对葡萄病害的正确识别率优于只用形状特征或纹理特征的病种识别,综合颜色特征和纹理特征的支持向量机识别方法对葡萄病种识别的正确率高于只用颜色特征或纹理特征的准确率。 A new method for recognizing grape leaf disease by using computer image processing and Support Vector Machine (SVM) was studied to improve recognition accuracy and efficiency. At first, vector median filter was applied to remove noise of the acquired color images of grape leaf with disease. Then a method of statistic pattern recognition and mathematics morphology was introduced to segment images of grape leaf with disease. At last texture features, shape features and color features of color image of grape leaf with disease were extracted, and classification method of SVM for recognition of grape disease was used. Experimental results indicate that the classification performance of Support Vector Machine is better than that of neural networks. Recognition rate of grape disease based on SVM of shape and texture feature is better than that of only using the shape or texture feature, recognition rate of grape disease based on SVM of color and texture feature is higher than that of only using the color or texture feature.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2007年第6期175-180,共6页 Transactions of the Chinese Society of Agricultural Engineering
关键词 支持向量机 图像处理 葡萄病害 矢量中值滤波 图像分割 特征向量 Support Vector Machine image processing grape disease vector median filter image segmentation eigenvector
  • 相关文献

参考文献10

二级参考文献41

  • 1毛文华 ,王一鸣 ,张小超 ,王月青 .基于机器视觉的苗期杂草实时分割算法[J].农业机械学报,2005,36(1):83-86. 被引量:44
  • 2MCDONALD T P,CHEN Y R.Separating connected muscle tissue in images of beef carcass ribeyes[J].Trans of ASAE,1990,33(6):2059-2065.
  • 3MCDONALD T P,CHEN Y R.Visual characterization of marbling in beef ribeyes and its relationship to taste parameters[J].Trans of ASAE,1991,34 (6):2499.
  • 4GERRARD D E,GAO X,TAN J.Beef marbling and color score determination by image processing[J].Journal of Food Science,1996,61(1):145-148.
  • 5KAZUHIKO SHIRANITA,KENICHIRO HAYASHI,AKIFUNME OTSUBO,et al.Grading meat quality by image processing[J].Pattern Recogenition,2000,33:97-104.
  • 6KAZUHIKO SHIRANITA,KENICHIRO HAYASHI,AKIFUNME OTSUBO.Determination of meat quality using texture features[J].Ieice Trans Inf & Syst,2000,83:8.
  • 7FUMITO YOSHIKAWA,KAZUO TORAICHI,KOICHI WADA,et al.On a grading system for beef marbling[J].Pattern Recognition Letters,2000,21:1037-1050.
  • 8[1]BURGES C J C.A totorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-169.
  • 9边肇祺 张学工.模式识别[M].北京:清华大学出版社,2002.296-304.
  • 10Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery, 1998, (2):121-169.

共引文献192

同被引文献917

引证文献84

二级引证文献988

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部