期刊文献+

基于SVM的煤岩破裂与失稳预测模型 被引量:3

Forecast model based on SVM during coal crack and destabilization
下载PDF
导出
摘要 煤岩破裂与失稳的定量化实验是准确预测预报采空区动力学灾害的基础研究。基于采空区上覆煤岩破裂与动力学失稳相似材料模拟实验,利用支持向量机方法对煤岩破裂的不同阶段进行预测,找出大尺度采空区煤岩介质断裂与突然失稳的应力-位移-声发射“预警值(区)”,对开采中诱发动力灾害的危险源辨识及预警提供了定量化的依据,为工程现场准确、及时预报采空区煤岩断裂失稳规律提供了有效依据。 Coal crack and destabilization quantitative experiment is a fundamental study on forecast dynamic hazard of gob area. Based on similarity material simulation experiment during coal crack and dynamic destabilization of gob area, forecasted different phases during coal crack by SVM technique, found out alarm value for stress-displacement-acoustic emission during coal medium crack and sudden destabilization of large scale gob area. By applied quantitative criteria for danger source discrimination and alarm induced dynamic hazard during mining, predicted rule timely and accurately for coal crack and destabilization of gob area. It provided for efficient guidance of the mining.
机构地区 西安科技大学
出处 《煤田地质与勘探》 CAS CSCD 北大核心 2007年第3期62-65,共4页 Coal Geology & Exploration
基金 国家自然科学基金项目(10402033) 教育部西部矿山开采与灾害控制重点实验室重点项目(04JS19)
关键词 支持向量机 支持向量回归机 核函数 相似模拟实验 support vector machine support vector regression kernel function similar simulation experiment
  • 相关文献

参考文献7

  • 1VAPNIK V N. The nature of statistical learning theory [ M ]. New York: Springer2 Vedag, 1995.
  • 2SHEN R M, FU Y G, LU H T. A novel image watermarking scheme based on support vector regression [ J]. The Journal of Systems and Software,2005,78 (1) : 1 - 8.
  • 3孙德山,吴今培,侯振挺,肖健华.单参数支持向量回归算法[J].系统工程学报,2005,20(1):109-112. 被引量:12
  • 4西安科技大学,神华能源集团神东煤炭分公司大柳塔煤矿,教育部西部矿山开采及灾害性控制重点实验室.大柳塔煤矿1^-2煤6m厚煤层一次采全厚开采方法及“支架-围岩”双馈动力学研究[R].2005.
  • 5CHERKASSKY V, MA Y Q. Practical selection of SVM parameters and noise estimation for SVM regression[ J]. Neural Networks, 2004, 17 (1): 113- 126.
  • 6LAI X P, CAI M F, XIE M W. In situ monitoring and analysis of rock mass behavior prior to collapse of the main transport roadway in Linglong Gold Mine, China[ J]. International Journal of Rock Mechanics & Mining Sciences, 2006, 43(4) : 640 - 646.
  • 7CAPPA F, GUGLIELMI Y, GAFFET S, et al. Use of in situ fiber optic sensors to characterize highly heterogeneous elastic displacement fields in fractured rocks[J]. International Journal of Rock Mechanics & Mining Sciences,2006, 43(4) : 647 - 654.

二级参考文献7

  • 1Vapnik V. Statistical Learning Theory[M]. New York: John Wiley & Sons, 1998.
  • 2Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
  • 3Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Knowledge Discovery and Data Mining, 1998, 2(2): 121-167.
  • 4Smola A J, Scholkopf B. A Tutorial on Support Vector Regression[R]. NeuroCOLT TR NC-TR-98-030, Royal Holloway College University of London, UK, 1998. 1-65.
  • 5Tax D. One-class Classification[D]. Netherlands: Delft University of Technology, 2001.
  • 6Müller K-R, Vapnik V. Using support vector machines for times series prediciton[A]. In: Advances in Kernel Methods-Support Vector Learning[M]. Cambridge: MIT Press, 1999. 243-253.
  • 7VapnikV 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..

共引文献11

同被引文献39

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部