摘要
连通图G所谓的l-边-连通度(l-edge-connectivity),就是使图G成为至少l个分支所必须去掉的最少边数,记作λl(G),即λl(G)=min{|E′|∶E′■E(G),ω(G-E′)≥l}.研究了完全2-分图的l-边-连通度,得到了定理:设G=G[V1,V2]是一个完全2-分图,|V1|=r,|V2|=s,r+k=s,k≥0为整数.则图G的(k+2)-边-连通度为(k+1)r,即λk+2(G)=r(k+1).
For an integer l≥2, 1- edge- connectivity At(G) of a connected graph G of order p≥1 is the number of edges that need to be deleted from G to produce a disconnected graph with at least l components. In this note, the author investigates the l - edge - connectivity λl (G) of Complete Bipartite Graph and obtains some results. Suppose G = G[ V], V2 ] is a Complete Bipartite Graph, | V1| = r, | V2|= s,r + R = s,R ≥0 and k is integer, then ( k + 2) - edge - connectivity of G graph is ( k + 1 ) r, that is A (k +2) (G) = r( k + 1 ).
出处
《重庆工商大学学报(自然科学版)》
2007年第3期223-224,227,共3页
Journal of Chongqing Technology and Business University:Natural Science Edition
基金
重庆市自然科学基金资助项目(CSTC.2007BA2024)
关键词
完全2-分图
l-边-连通度
l-序列割
Complete Bipartite Graph
l - edge - connectivity
l - sequential cut