期刊文献+

向量值次线性算子在Herz-Morrey空间上的加权有界性

Boundedness of Vector-valued Sublinear Operators on the Weighted Herz-Morrey Spaces
下载PDF
导出
摘要 研究了向量值次线性算子在Herz-Morrey空间及弱Herz-Morrey空间上的加权有界性,得到了一大类定义在Rn上的算子向量值不等式. In this paper, the author establishes the strong and weak type norm inequalities for a vector-valued sublinear operators on the weighted Herz-Morrey spaces; using this, the author obtains the inequalities for a class of singular operators defined on R^n which include the Calderon-zygmundoperators as special cases.
出处 《淮阴师范学院学报(自然科学版)》 CAS 2007年第2期108-113,共6页 Journal of Huaiyin Teachers College;Natural Science Edition
关键词 向量值次线性算子 加权Herz—Morrey空间 加权弱Herz—Morrey空间 有界性 vector-valued sublinear operators the weighted Herz-Morrey spaces weighted weak Herz-Morrey spaces boundedness
  • 相关文献

参考文献6

  • 1Andersen K F,John R T.Weighted inequalities for vector-valued maximal functions and singular integrals[].Studia Math TLXIX.1980
  • 2Beurling A.Construction and analysis of some convolution alegebras[].Annales de l Institut Fourier.1964
  • 3Ferferman C,Stain E M.Some maximal inequalities[].American Journal of Mathematics.1971
  • 4Li X,Yang D.Boundedness of some sublinear operators on Herz spares[].Illinois Journal of Mathematics.1996
  • 5Morrey C B.On the solution of quasi-linear elliptic partial differential equation[].Transactions of the American Mathematical Society.1938
  • 6Herz C.Lipschilz spaces and Bernstain’s theorem on absoluted convergrnt Fourier transforms[].Journal of Mathematics and Mechanics.1968

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部