摘要
利用Huang和Fang提出的广义m-增生映象的预解算子技巧,文章构造了一种新的扰动迭代算法2.1,并讨论了迭代算法2.1产生的序列{(x_n,y_n)},关于Banach空间中一类关联于广义m-增生映象的广义预解算子方程组(1.1)的解的收敛性和稳定性。主要结果定理2.1改善并推广了文献[1-3]的相应结果。
By using the resolvent operator technique for generalized m-accretive mapping due to Huang and Fang, we construct a new perturbed iterative algorithm 2.1, discuss the convergence and stability of the sequence{(xn, yn)}generalted by the iterative algorithm 2.1, which is used for solving a system of nonlinear operator equations associated generalized m-accretive mappings in Banach spaces. The main results in Theoem 2.1 improve and generalize the corresponding results of [ 1-3].
出处
《四川理工学院学报(自然科学版)》
CAS
2007年第3期30-33,共4页
Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金
四川理工学院科研项目(2006ZR003)
关键词
广义M-增生映象
非算子方程组
扰动迭代序列
收敛性
稳定性
generalized m -accretive mapping
nonlinear operator equation system
perturbed iterativealgorithm
convergence
stability