期刊文献+

求解一类非线性算子方程组的扰动迭代序列的稳定性

Stability of Perturbed Iterative Sequence for Solving a System of Nonlinear Operator Equations
下载PDF
导出
摘要 利用Huang和Fang提出的广义m-增生映象的预解算子技巧,文章构造了一种新的扰动迭代算法2.1,并讨论了迭代算法2.1产生的序列{(x_n,y_n)},关于Banach空间中一类关联于广义m-增生映象的广义预解算子方程组(1.1)的解的收敛性和稳定性。主要结果定理2.1改善并推广了文献[1-3]的相应结果。 By using the resolvent operator technique for generalized m-accretive mapping due to Huang and Fang, we construct a new perturbed iterative algorithm 2.1, discuss the convergence and stability of the sequence{(xn, yn)}generalted by the iterative algorithm 2.1, which is used for solving a system of nonlinear operator equations associated generalized m-accretive mappings in Banach spaces. The main results in Theoem 2.1 improve and generalize the corresponding results of [ 1-3].
作者 刘自山
出处 《四川理工学院学报(自然科学版)》 CAS 2007年第3期30-33,共4页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金 四川理工学院科研项目(2006ZR003)
关键词 广义M-增生映象 非算子方程组 扰动迭代序列 收敛性 稳定性 generalized m -accretive mapping nonlinear operator equation system perturbed iterativealgorithm convergence stability
  • 相关文献

参考文献5

  • 1Huang N J,Fang Y P.Generalized m-accretive mappings in Banach spaces[J].J.Sichuan Univ,2001,38(4):591-592.
  • 2Lan H Y,Kim J K,Huang N J.On the generalized nonlinear quasi-variational inclusions involving non-monotone set-valued mappings[J].Nonlinear Funct.Anal.& Appl,2004,9(3):451-465.
  • 3Liu L S.Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces[J].J.Math.Anal.Appl,1995,194:114-125.
  • 4刘万军,刘自山.一类广义预解算子方程组的解的存在性[J].四川理工学院学报(自然科学版),2007,20(3):14-17. 被引量:1
  • 5Xu H K.Inequalities in Banach spaces with applications[J].Nonlinear Anal,1991,16(12):1127-1138.

二级参考文献4

  • 1Huang N J,Fang Y P.Generalized m-accretive mappings in Banach spaces[J].Journal of Sichuan University,2001,38(4):591-592.
  • 2Lan H Y,Liu Q K,Li J.Iterative approximation for a system of nonlinear variational inclusions involving generalized m-accretive mappings[J].Nonlinear Anal.Forum,2004,9(1):33-42.
  • 3Lan H Y,Huang N J,Cho Y J.New iterative approximation for a system of generalized nonlinear variational inclusions with set-valued mappings in Banach spaces[J].Math.Inequal.Appl.,2006,9(1):175-187.
  • 4Xu H K.Inequalities in Banach spaces with applications[J].Nonlinear Anal,1991,16(12):1127-1138.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部