摘要
设X是可分自反Banach空间,是取值于X中闭凸集的可测集值随机过程.该文证明了,若任给停时关于(相应地关于)是σ-可积,则{Ft,t∈R+}必存在可选(相应地可料)投影过程.
Let {Ft,t,, t∈R+} be a measurable multivalued stochas processes valued in a seperable reflexive Banach Space. The preset paper shows that if for every stopping time T,FTI[T<∞] is σ-integrable with respect to the σ -field of events(strictly) prior to T, Then {Ft,t∈R+) has an opitional (predictable) projection processe.
出处
《数学物理学报(A辑)》
CSCD
北大核心
1997年第1期99-104,共6页
Acta Mathematica Scientia
基金
国家自然科学基金