期刊文献+

二相驱动问题的一种全离散过程的超收敛性 被引量:1

SUPERCONVERGENCE IN A TIME-DISCRETIZATION PROCEDURE OF MISCIBLE DISPLACEMENT
原文传递
导出
摘要 考虑可混溶不可压缩的二相驱动问题的超收敛性分析,引进一种有效的全离散过程,采用一致网格剖分、指标为k的Raviart-Thomas空间对压力方程作混合有限元逼近;用拟正则剖分、逼近阶为l的全离散Galerkin方法,其系数中的速度值用具有超收敛性的核函数平均值确定。 An efficient time stepping procedure is introduced to treat the continous time method of Douglas for approximating the solution of the equations describing the miscible displacement of one incompressible fluid by another in porous media.The convergence analysis is a periodic setting.The pressure is approximated by a mixed finite element procedure using a Raviart Thomas space of index k over a uniform grid.The resulting Darcy velocity field is postprocessed by convolution with a Bramble Schatz kernel and this enhanced velocity is used in the evaluation of the coefficients in the Galerkin procedure for the concentration.If the concentration space is of local degree l ,then the error,as measured in L 2 (Ω),in the concentration is 0 (h l+1 c+h 2k+2 p+Δt c+(Δt p) 2) ,which is an optimal reflection of the superconvergent velocity approximation.
作者 陈艳萍
机构地区 山东大学数学系
出处 《山东大学学报(自然科学版)》 CSCD 1997年第1期1-8,共8页 Journal of Shandong University(Natural Science Edition)
基金 国家教委博士点基金
关键词 全离散过程 超收敛性 驱动问题 多孔介质流动 time discretization kernel function superconvergence
  • 相关文献

同被引文献15

  • 1A. I. Pehlivanov,G. F. Carey,R. D. Lazarov,Y. Shen.Convergence analysis of least-squares mixed finite elements[J].Computing.1993(2)
  • 2Pehlivanov A I,Carey G F,Lazarov R D.Least-squares mixed finite elements for second-order elliptic problems[].SIAM Journal on Numerical Analysis.1994
  • 3Brezzi F,Douglas J Jr,Fortin M,et al.Efficient rectangular mixed finite elements in two and three space variables[].RAIRO Modélisation Mathématique et Analyse Numérique.1987
  • 4Douglas Jr J,Roberts JE.Global estimates for mixed methods for second order elliptic equations[].Mathematics of Computation.1985
  • 5Ciarlet PG.The Finite Element Method for Elliptic Problems[]..1978
  • 6Lin Q,Zhu Q D.The Preprocessing and Postprocessing for the Finite Element Method[]..1994
  • 7J.H. Brandts.Superconvergence and a posteriori error estimation for triangular mixed finite elements[].Numerical Mathematics.1994
  • 8Duran,R.Superconvergence for rectangular mixed finite elements[].Numerical Mathematics.1994
  • 9Chen Y.P,Huang Y.Q.,Shen Z.H.The Least-Squares Mixed Finite Element Method for incompressible Miscible displacements[].Mathematical Numerical Snica.2000
  • 10Breezi,F.On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers.PAIRO Model[].Math Anal.1974

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部