期刊文献+

热处理与元素掺杂对原位法MgB_2/Fe/Cu超导线材临界电流密度的影响 被引量:2

Influence of Heat-Treatment and Element Doping on Critical Current Density of MgB_2/Fe/Cu Wires Fabricated by in-Situ PIT Technique
下载PDF
导出
摘要 采用低碳钢作为外包套材料,通过原位法粉末装管工艺(in-situ PIT)制备出高密度Ti、Zr掺杂的MgB2/Fe/Cu线材。将线材短样在氩气保护条件下,于650~800℃烧结2~5h。MgB2线材的微结构分析显示,通过该工艺制备的MgB2/Fe/Cu线材比MgB2块材具有更好的晶粒连结性和更高的致密度。采用标准的四引线法,在4.2K,0~8T的磁场下测试线材的临界电流密度。测试结果显示,800℃烧结的Mg0.9Zr0.1B2/Fe/Cu线材获得了最高的临界电流密度。 Ti, Zr-doped dense MgB2/Fe/Cu wires were successfully fabricated adopting the in-situ powder-in-tube (PIT) method using low carbon steel sheath. The short samples wires were sintered at 650-850 ℃ for 2-5 h in argon. Critical current density (Jc) of the wires was measured at 4.2 K in the magnetic field up to 8 T by standard four probe method. High Jc values of 2.1×10^5A/cm2 were obtained in 3 T at 4.2 K for MgB2/Fe/Cu wires. Mg0.9Zr0.iB2/Fe/Cu wires sintered at 800 ℃ heat the highest Jc. The microstructure observation for wires showed that MgB2/Fe/Cu wires have better grain connectivity and higher density compared to MgB2 bulk samples. The Jc can be further improved to meet the requirement for applications by optimizing the process conditions.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2007年第6期977-980,共4页 Rare Metal Materials and Engineering
基金 国家重点基础研究发展计划(2006CB601004) 国家自然科学基金(50472099)资助
关键词 MgBz线材 原位粉末装管法 元素掺杂 临界电流密度 MgB2 wires in-situ fabrication element doping critical current density
  • 相关文献

参考文献13

  • 1Nagamatsu J, Nakagawa N, Muranaka T et al. Nature[J], 2001, 410:63
  • 2Liao X Z, Serquis A, Zhu Y T et al. Appl Phys Lett[J], 2002, 80:4398
  • 3Serquis, Liao X Z, Zhu Y T et al. J Appl Phys[J], 2002, 92:351
  • 4Martinez E, Angurel L A, Navarro R. Sci Technol[J], 2002, 15: 1043
  • 5Grasso G,Malagoli A, Ferdeghini C et al. Appl Phys Lett[J], 2002, 79:230
  • 6Pachla W, Presz A, Diduszko R P et al. Supercond Sci Technol[J], 2002, 15:1281
  • 7Alexey V Pan, Sihai Zhou, Huakun Liu et al. Supercond Sci Technol[J], 2003, 16:639
  • 8Kovac P, Husek I, Pachita Wet al. Supercond Sci Technol[J], 2002, 15:1127
  • 9Glowacki B A, Majoros M, Vickers Met al. Supercond Sci Technol[J], 2001, 14:193
  • 10Dou S X, Pan A V, Zhou S et al. Supercond Sci Technol[J], 2002, 15:1587

同被引文献9

  • 1J Nagamatsu et al. Nature[J], 2001, 410:63.
  • 2Fu B Q, Feng Y, Yan G et al. J Appl Phys[J], 2002, 92(12): 7341.
  • 3Martinez E, Angurel L A, Navarro R. Supercond Sci Technol[J], 2002, 15:1043.
  • 4Zhou Sihai, Pan Alexey V, Liu Huakun et al. Supercond Sci Technol[J], 2002, 15:1490.
  • 5Dou S X, Pan A V, Zhou S H et al. Supercond Sci Technol[J], 2002, 15:1587.
  • 6Matsumoto A, Kumakura H, Kitaguchi H et al. Supercond Sci Technol[J], 2004, 17:S319.
  • 7Gumbel A, Eckert J, Fuchs G et al. Appl Phys Lett[J], 2002, 80:2725.
  • 8冯勇,周廉,刘向宏,纪平,张平祥,赵勇,孙玉平.粉末装管法高临界电流密度MgB_2/Ta/Cu线材[J].科学通报,2001,46(21):1846-1847. 被引量:2
  • 9闫果,冯勇,付宝全,刘春芳,纪平,张平祥,周廉.粉末套管法制备MgB_2/Fe超导线材及超导电性[J].科学通报,2003,48(8):777-779. 被引量:10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部