期刊文献+

以SDS-PEG团簇为软模板在温和条件下合成金纳米环 被引量:8

Synthesis of Au Nanorings Using SDS-PEG Cluster as the Soft Template under Mild Conditions
下载PDF
导出
摘要 介绍一种由十二烷基硫酸钠(SDS)与聚乙二醇(PEG 20000)组成的团簇为软模板,在室温、常压、无硬模板及无外加还原剂条件下自还原HAuCl4合成金纳米环的新方法.TEM显示合成的金纳米环的直径为(500±50)nm;UV-vis光谱显示在800nm以上区域有强吸收带,证明有大的各向异性的纳米结构生成.电子衍射(ED)显示合成的金纳米环为金单晶结构;XRD显示金纳米环的(200)与(111)衍射峰的强度比(I(200)/I(111))为0.11,比反应初始阶段的0.31降低0.2左右,表明金纳米结构主要为(111)晶面取向.TEM和SEM跟踪显示,金纳米环的生长经历了从金纳米球到纳米片再到纳米环的变化过程,控制反应时间可以得到预期的金纳米结构. A novel method to prepare Au nanorings by self-reduction of HAuCI4 in the soft template composed of sodium dodecyl sulfate (SDS)-PEG 20000 cluster at ambient temperature and atmosphere was reported, in which no hard template and extra reducer was needed. TEM image displays that the diameter of Au nanorings is (500±50) nm. UV-vis spectrum reveals that there is relatively stronger absorption band beyond 800 nm, which is attributed to big and anisotropic nanostructures. Electron diffraction (ED) pattern shows that the synthesized nanoring is monocrystal Au. XRD pattern of the Au nanorings indicates that the ratio of the intensity between the (200) and (111) diffraction peaks [I(200)/I(111)] is 0.11. The fact that [I(200)/I(111)] decreases 0.2 from the original 0.31 suggests that Au nanorings grow preferentially along (111) lattice planes. The process of Au nanoparticles growing from nanospheres through nanoplates and eventually to nanorings is tracked by both TEM and SEM, which indicates that if the reduction period is controlled the preferred Au nanostructures could be obtained.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2007年第12期1177-1180,共4页 Acta Chimica Sinica
基金 国家自然科学基金(No.20371021)资助项目.
关键词 金纳米环 软模板 团簇 十二烷基硫酸钠 聚乙二醇 Au nanoring soft template cluster sodium dodecyl sulfate polyethylene glycol
  • 相关文献

参考文献29

  • 1Hao,E.;Bailey,R.C.;Schatz,G.C.;Hupp,J.T.;Li,S.Nano Lett.2004,4,327.
  • 2Jin,R.C.;Cao,Y.W.;Mirkin,C.A.;Kelly,K.L.;Scatz,G.C.;Zheng,J.G.Science 2001,294,1901.
  • 3Sosa,I.O.;Noguez,C.;Barrera,R.G.J.Phys.Chem.B 2003,107,6269.
  • 4Yu,Y.-Y.;Chang,S.-S.;Lee,C.-L.;Wang,C.R.C.J.Phys.Chem.B 1997,101,6661.
  • 5Daniel,M.-C.;Astruc,D.Chem.Rev.2004,104,293.
  • 6Cui,Y.;Wei,Q.-Q.;Park,H.-K.;Lieber,C.M.Science2001,293,1289.
  • 7Jana,N.R.;Gearheart,L.;Murphy,C.J.Adv.Mater.2001,13,1389.
  • 8Nikoobakht,B.;El-Sayed,M.A.Chem.Mater.2003,15,1957.
  • 9Pei,L.H.;Moil,K.;Adachi,M.Langmuir 2004,20,7837.
  • 10Simakin,A.V.;Voronov,V.V.;Shafeev,G.A.;Brayner,R.:Bozon-Verduraz,F.Chem.Phys.Lett.2001,348,182.

二级参考文献21

  • 1Wang C., Tam K. C.. Langmuir[J], 2002, 18: 6 484-6490
  • 2Wesley R. D., Cosgrove T.. Langmuir[J], 2002, 18: 5 704-5 707
  • 3Anghel D. F., Toca-Herrera J. L., Winnik F. M. et al.. Langmuir[J], 2002, 18: 5 600-5 606
  • 4Goddard E. D.. Colloids and Surfaces[J], 1986, 19: 255-300
  • 5Chari K., Lenhart W. C.. J. Colloid & Interface Sci.[J], 1990, 137(1): 204-215
  • 6Arai H., Murata M., Shinoda K.. J. Colloid and Interface Science[J], 1971, 37(1): 223-227
  • 7Erik, E; Daniel, T.; Peter, S.; Olle, S. Langmuir 2004, 20,1138.
  • 8Cabane, B.; Duplessix, R. J. Phys. (Paris) 1982, 43, 1529.
  • 9Jones, M. N. J. Colloid Interface Sci. 1967, 23, 36.
  • 10Hai, M. T.; Han, B. X. J. Colloid Interface Sci. 2003, 267,173.

共引文献12

同被引文献130

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部