摘要
The atmospheric infrared sounder (AIRS) instrument onboard Aqua Satellite is a high spectral resolution infrared sounder. In recent years, AIRS has gradually become the primary method of atmospheric vertical observations. To examine the validation of AIRS retrieval products (V3.0) over China, the AIRS surface air temperature retrievals were compared with the ground observations obtained from 540 meteorological stations in July 2004 and January 2005, respectively. The sources of errors were considerably discussed. Based on the error analysis, the AIRS retrieved surface air temperature products were systemically corrected. Moreover, the AIRS temperature and humidity profile retrievals were compared with T213 numerical forecasting products. Because T213 forecasting products are not the actual atmospheric states, to further verify the validation, the AIRS temperature and humidity profile products were assimilated into the MM5 model through the analysis nudging. In this paper, the case on February 14, 2005 in North China was simulated in detail. Then, we investigated the effects of AIRS retrievals on snowfall, humidity field, vertical velocity field, divergence field, and cloud microphysical processes. The major results are: (1) the errors of AIRS retrieved surface air temperature products are largely systematic deviations, for which the influences of terrain altitude and surface types are the major reasons; (2) the differences between the AIRS atmospheric profile retrievals and T213 numerical prediction products in temperature are generally less than 2 K, the differences in relative humidity are generally less than 25%; and (3) the AIRS temperature and humidity retrieval products can adjust the model initial field, and thus can improve the capacity of snowfall simulation to some extent.
The atmospheric infrared sounder (AIRS) instrument onboard Aqua Satellite is a high spectral resolution infrared sounder. In recent years, AIRS has gradually become the primary method of atmospheric vertical observations. To examine the validation of AIRS retrieval products (V3.0) over China, the AIRS surface air temperature retrievals were compared with the ground observations obtained from 540 meteorological stations in July 2004 and January 2005, respectively. The sources of errors were considerably discussed. Based on the error analysis, the AIRS retrieved surface air temperature products were systemically corrected. Moreover, the AIRS temperature and humidity profile retrievals were compared with T213 numerical forecasting products. Because T213 forecasting products are not the actual atmospheric states, to further verify the validation, the AIRS temperature and humidity profile products were assimilated into the MM5 model through the analysis nudging. In this paper, the case on February 14, 2005 in North China was simulated in detail. Then, we investigated the effects of AIRS retrievals on snowfall, humidity field, vertical velocity field, divergence field, and cloud microphysical processes. The major results are: (1) the errors of AIRS retrieved surface air temperature products are largely systematic deviations, for which the influences of terrain altitude and surface types are the major reasons; (2) the differences between the AIRS atmospheric profile retrievals and T213 numerical prediction products in temperature are generally less than 2 K, the differences in relative humidity are generally less than 25%; and (3) the AIRS temperature and humidity retrieval products can adjust the model initial field, and thus can improve the capacity of snowfall simulation to some extent.
基金
the National Natural Science Foundation of China under Grant No. 40271079.