期刊文献+

一类带约束min-max-min问题的区间算法

An Interval Algorithm for a Class of Constrained min-max-min Problems
下载PDF
导出
摘要 建立了一类带约束Min-Max-Min问题的数值方法,其中目标函数和约束条件均为Lipschitz连续函数。利用区间分析方法,基于罚函数法和区域二分原则,针对问题及目标函数约束条件的不可微的特点,构造了罚函数的区间扩张和无解区域删除原则,建立了区间算法,证明了该算法的收敛性。对算法进行了数值实验,并给出了数值算例,结果表明:该方法可以同时求出问题的最优值和全部全局最优解,是有效和可靠的。 An interval method for a class of constrained min-max-min problems is established, in which the objective functions and constrained functions are Lipsehitz continuous. Using the interval analysis and based on the penalty function and the region bisection method, and eontmposing the nondifferentiable trait of the problem and the constrained condition of the objective functions,the interval extensions of penalty functions and region deletion testing rules were constructed, the interval algorithm was established and convergence of algorithm was proven. Numerical experiments are performed to the algorithm and numerical results are presented. The results show that the method gets both the best value and all global solutions. The algorithm is effective and reliable.
出处 《石河子大学学报(自然科学版)》 CAS 2007年第2期256-259,共4页 Journal of Shihezi University(Natural Science)
基金 国家自然科学基金项目(60575046)
关键词 Min-Max-Min问题 区间算法 罚函数法 全局解 min-max-min problem interval algorithm penalty function global solutions
  • 相关文献

参考文献11

  • 1Polak E.Smoothing techniques for the solution of finite and semi-infinite min-max-min problems[J].High performancealgo rithms and software for nonlinear optimization,2003:343-362.
  • 2Polak E,Royset J O.Algorithms for finite and semi-infinite min-max-min problems using adaptive smoothing techniques[J].Journal of optimization theory and application,2003,119(3):421-457.
  • 3刘国新,冯果忱,于波.解序列极大极小问题的凝聚同伦方法[J].吉林大学学报(理学版),2003,41(2):155-156. 被引量:17
  • 4陈美蓉,蒋娟,曹德欣.一类min-max-min问题的区间算法[J].应用数学与计算数学学报,2006,20(2):55-63. 被引量:7
  • 5Shen ZuHe,Zhu Y,An interval version of Shubert's interative method for the localization of the global maximum[J].Computing,1987,(38):275-280.
  • 6曹德欣 黄震宇.An interval algorithm for a discrete minimax.南京大学学报:数学半年刊,1997,14(1):74-42.
  • 7曹德欣,李苏北,吴彦强,张洪斌.求连续minimax问题整体解的区间算法[J].高等学校计算数学学报,2002,24(4):359-365. 被引量:11
  • 8Shen Zuhe,Neumaier A,Eiermann M C.Solving minimax problems by interval methods[J].BIT,1990,(30):742-751.
  • 9Moore R E.Methods and applications of interval analysis[M].Phiadelphia:SIAM,1979.
  • 10Alefeld G,Mayer G.Interval analysis:theory and applications[J].Journal of computational and applied mathemtics,2000,121:421-464.

二级参考文献23

  • 1李兴斯.AN AGGREGATE FUNCTION METHOD FOR NONLINEAR PROGRAMMING[J].Science China Mathematics,1991,34(12):1467-1473. 被引量:30
  • 2王海鹰,刘蕴华,张乃良.解一类非线性Minimax问题[J].高校应用数学学报(A辑),1996,11(2):199-206. 被引量:7
  • 3曹德欣 黄振宇.An interval algorithm for a discrete minimax problem[J].南京大学学报:数学半年刊,1997,14(1):74-82.
  • 4Shen, Z. H. , Neumaier, A. andEiermann, M. C.. Solving minimax problems by interval methods. BIT, 1990, 30:742-751
  • 5Dem'ya, F. and Malozemov, F.N.. Introduction to minimax. New York: John Wiley &Sons,1974
  • 6Moore, R.E.. Methods and applications of interval analysis. Philadelphia: SIAM,1979
  • 7Alefeld, G. and Herzberger, J.. Introduction to interval computations. New York:Academic Press, 1983
  • 8Shen, Z.H. and Zhu, Y.R.. An interval version of Shubert's iterative method forlocalization of the global maximum. Computing, 1987,38: 275- 280
  • 9Shen, Z.H. , Huang, Z.Y. and Wolfe, M. A. . An interval maximum entropy method fora discrete minimax problem. Appl. Math. and Comput. , 1997, 87(1):49-68
  • 10Wolfe, M. A.. On discrete minimax problems in R using interval arithmetic. ReliableComputing,1999, 5(4):371-383

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部