期刊文献+

改进的快速模糊C均值聚类的图像分割方法 被引量:12

A modified method for image segmentation with fast fuzzy C-means clustering
下载PDF
导出
摘要 传统的模糊C均值(FCM)聚类算法广泛用于图像的自动分割,但该算法没有考虑像素的灰度和空间特征,对噪声和伪斑点图像不可能取得好的分割效果.提出一种改进的算法,在快速的FCM聚类的基础上,运用邻域像素的灰度相似度和聚类分布统计构造新的隶属函数,对图像进行二次聚类分割.该算法具有以下优点:1)有效地抑制了噪声的干扰;2)减少了图像的伪斑点;3)把误分类的像素很容易地纠正过来.对两种类型图像的实验分割结果表明该方法对噪声和伪斑点具有很强的鲁棒性和对像素聚类的正确性. Conventional fuzzy C-means (FCM) clustering algorithm has been widely used in automated image segmentation. However, it was not successful to segment the noise image and the image with spurious blobs because the gray-scale and spatial characteristics of the pixel were not taken into consideration. Therefore, a modified algorithm was proposed for secondary clustering and segmentation of the image on the basis of fast FCM clustering, and using the gray-scale similarity and cluster distribution statistics of the neighbor pixels to form a new membership function. The advantages of this new method were as follows: 1) it was effective to restrain the noisy interference, 2) it reduced the spurious blobs of the image, and 3) it was ease to correct the misclassified pixels. Experimental results of two types of noisy images indicated that the segmentations were more accurate and robust than those with standard FCM algorithm.
作者 李明 李云松
出处 《兰州理工大学学报》 CAS 北大核心 2007年第3期95-99,共5页 Journal of Lanzhou University of Technology
基金 甘肃省自然科学基金(3ZS042-B25-007)
关键词 快速模糊C均值 灰度相似性 邻域空间特征 图像分割 鲁棒性 fast fuzzy C-means gray-scale similarity neighbor spatial feature image segmentation robustness
  • 相关文献

参考文献9

  • 1CHEN Weijie,MSC MARYELLEN L.A fuzzy C-means(FCM) based approach for computerized segmentation of breast lesions in dynamic contrast enhanced MR images[J].Academic Radiology,2006,13 (1):63-72.
  • 2AHMED M N,YAMANY S M,MOHAMED N.A modified fuzzy C-means algorithm for bias field estimation and segrnentation of MRI data[J].IEEE Trans on Medical Imaging,2002,21(3):193-199.
  • 3MUNEESWARAN K,GANESAN L,ARUMUGAM S.Texture image segmentation using combined features from spatial and spectral distribution[J].Pattern Recoglett,2006,27:755-764.
  • 4丁震,胡钟山,杨静宇,唐振民.FCM算法用于灰度图象分割的研究[J].电子学报,1997,25(5):39-43. 被引量:50
  • 5侯艳丽,杨国胜.基于模糊聚类和Fisher判据的图像分割算法[J].计算机工程与应用,2004,40(28):62-63. 被引量:3
  • 6KRISHNAPURAN K J M.A possibilistic C-means algorithm[J].IEEE Trans Fuzzy Syst,1993,2:100-112.
  • 7WANG X,WANG Y,WANG L.Improving fuzzy C-means clustering based on feature-weight learning[J].Pattern Recognit Lett,2004,25:123-132.
  • 8ZHANG Daoqiang,CHEN Songcan.A novel kernelized fuzzy C-means algorithm with application in medical image segmentation[J].Artificial Intelligence in Medicine,2004,32:3-50.
  • 9PAL N R,BEZDEK J C.On cluster validity for the fuzzy Cmeans model[J].IEEE Transactions on Fuzzy Systems,1995,3(3):370-379.

二级参考文献7

  • 1Fu K S,Pattern Recognit,1981年,14卷,1期,3页
  • 2J C Dunn. A fuzzy relative of the ISODATA process and its use in detecting compact,well-sepatated clusters[J].Journal of Cybernetics,1979; 3: 32~57
  • 3J C Bezdek.Pattern recognition with fuzzy objective function algorithms[M].New Youk :Plenum, 1981
  • 4M M Trivedi,J C Bezdek. Low level segmentation of aerial images with fuzzy clustering[J].IEEE Trans on SMC, 1986;16(4):589~598
  • 5R I Cannon,J Dave,J C Bezdek.Efficient implementation of the fuzzy c-means clustering algorithms[J].IEEE Trans on PAMI,1986;8(2): 248~255
  • 6Y Deng,C Kenney,M S Moore et al. Manjunath. Peer group filtering and perceptual color image quantization[C].In:Proceedings of 1999IEEE International Symposium on Circuits and Systems,1999;4:21~24
  • 7C Kenney,Y Deng,B S Manjunath et al.Peer group image enhancement[J].IEEE Transaction on Image Processing,2001 ;10(2):326~334

共引文献51

同被引文献127

引证文献12

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部