期刊文献+

用小波包识别地震和矿震 被引量:32

A Wavelet Packet Approach to Wave Classification of Earthquakes and Mining Shocks
下载PDF
导出
摘要 在能检测到天然地震和矿震的区域,这两类地震的快速识别无论对于区域台网和矿区台网都具有现实意义。这两类震动都是非稳态信号,用传统的Fourier变换不能提取出信号的特征信息,小波包分析方法却能很好提取出信号的特征信息。本文提供了一种基于非参数识别算法,即把信号变换到频域,然后再用奇异值分解作为统计工具,提取出信号的特征信息,作为识别天然地震和矿震的识别因子。以辽宁抚顺2001年1月1日到2003年6月30的18个矿震和16个天然地震,以及北京门头沟2001年1月1日到2002年12月31日的15个矿震和14个天然地震为样本,提取出识别因子。最后,用其它的天然地震和矿震资料检验了识别因子的识别率。 Signal possessing of non-stationary information are not suited for detection and classification by traditional Fourier methods. An alternate means of analysis needs to be employed so that valuable time-frequency information can be extracted. The Wavelet Packet Transform (WPT) is such a time-frequency analysis tool. It describes an approach to signal classification that may satisfy the need of a non-parametric feature extraction algorithm that best adapts to sets of pre-classified data. There are 18mining shocks and 16 earthquake recorded by three-component seismographs in the seismic network in Liaoning Province from Jan. 1, 2000 to June 30, 2003 and 15 mining shocks and 14 earthquakes recorded by three-component seismographs in the seismic network in Huabei from Jan 1, 2000 to Dec 31, 2002. Using the WPT method, a parsimonious set of features is determined from above mining shocks and earthquake data. Finally, the feature set is tested by signals in the waves of many mining shocks and earthquakes.
出处 《中国地震》 CSCD 北大核心 2006年第4期425-434,共10页 Earthquake Research in China
基金 科技部社会公益研究专项资金资助项目(2001DIB) 国家自然科学基金资助项目(40474018)
关键词 小波包 识别 地震 矿震 Wavelet Packet Classification Earthquake Mining shocks
  • 相关文献

参考文献8

  • 1张萍,高艳玲,肖健,肖立萍.辽宁台网记录爆破、矿震与地震的识别[J].地震地磁观测与研究,2001,22(5):29-34. 被引量:21
  • 2赵永,刘卫红,高艳玲.北京地区地震、爆破和矿震的记录图识别[J].地震地磁观测与研究,1995,16(4):48-54. 被引量:55
  • 3Dauhechies,I.,1988,Orthonormal bases of compactly supported wavelets,Commun.On Pure and Appl.Math.,Vol.XLI,901 ~ 996.
  • 4Grossmann,A.and J.Morlet,1984,Decomposition of Hardy functions into square integrable wavelets of constant shape,SIAM J.Math.Anal.15(4),723 ~ 736.
  • 5Mallat.S.,1989,A theory for multiresolution signal decomposion:the wavelet represention,IEEE trans.on Pattern Anal.and Mach.Intel.,11(7),674 ~ 793.
  • 6Morlet,J.,Arens G.,Fourgeau E.,et al,1982a,Wave propagation and Sampling theory-part 1:complex signal and scattering in multilayered media,Geophysics,47(2),203 ~ 221.
  • 7Morlet,J.,G.Arens,E.,Fourgeau,et al,1982b,Wave propagation and Sampling theory-part 2:sampling theory and complex waves,Geophysics,47(2),222 ~ 236.
  • 8Rachel E.L.,Willsky A.S.,1995,A Wavelet Packet Approach to Transient Signal Classification.Applied and Computational Harmonic Analysis.Jul.,2(3):265 ~ 278.

二级参考文献3

共引文献67

同被引文献388

引证文献32

二级引证文献242

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部