期刊文献+

图模型方法及ARMA模型检验 被引量:3

Graphical modeling for test of ARMA model
下载PDF
导出
摘要 应用图模型方法来研究时间序列中的因果关系,并以ARMA(1,1)时间序列为例作了说明.将ARMA模型表示成混合图,证明了ARMA模型的系数就是在移去了时间序列中其他成员的线性效应后的偏相关系数.这样就可运用通常的图模型推断算法来做参数估计和预测.与传统的对ARMA模型的检验法相比较,该方法既直观又易于计算. Graphical modeling is a new statistical method in recent times. It is the one of hot points recently for applying graphical models to time series in mathematical statistics. In this paper, we analyze the causality in time series with graphical models, and discuss the classical ARMA ( 1,1 ) model as an example. The ARMA models are expressed as mixed graphical models, and then we show that the coefficients of ARMA model are the partial correlation coefficients after removing the linear effects of the other components of the time series. Thus a new approach is proposed to parameter estimation and test with the common graphical modeling inferential procedure. Compared to the traditional test method for ARMA models, our method is intuitive and very simple in computations.
出处 《广州大学学报(自然科学版)》 CAS 2007年第4期7-8,共2页 Journal of Guangzhou University:Natural Science Edition
关键词 图模型方法 时间序列分析 因果关系 ARMA模型 Graphical modeling time series analysis causal relation ARMA model
  • 相关文献

参考文献6

  • 1Edwards D.Introduction to graphical modeling[M].New York:Springer-Verlag,2000.
  • 2Lauritzen S L.Graphical models[M].Oxford:Oxford University Press,1996.
  • 3Eichler M.Graphical modelling of time series[R].The University of Chicago,2004a.
  • 4Eichler M.Granger-causality and path diagrams for multivariate time series[R].The University of Chicago,2004b.
  • 5Ip,W C,Wong H,Li Y.A new parametric test for AR and Bilinear time series with graphical models[R].Hong Kong Chinese University,2006.
  • 6Liu J.On stationarity and asymptotic inference of bilinear time series models[J].Statistica Sinica,1992,2:479-494.

同被引文献22

  • 1COX D R, WERMUTH N. Multivariate Dependencies: Models, Analysis and Interpretation [ M ]. London: Chapman & Hall, 1996.
  • 2LAURITZEN S L. Graphical Models [ M ]. Oxford: Oxford University Press, 1996.
  • 3WHITTAKER J. Graphical Models in Applied Multivariate Statistics[ M ]. Chiehester: John Wiley, 1990.
  • 4DAHLHAUS R, EICHLER M. Causality and Graphical Models for Time Series:Highly Structured Stochastic Systems [ M ]. Oxford : Oxford University Press, 2002.
  • 5EICHLER M. Graphical modeling of time series [ R ]. Chicago:The University of Chicago ,2004 (a).
  • 6EICHLER M. Granger- causality and path diagrams for multivariate time series [ R]. Chicago:The University of Chicago ,2004(b).
  • 7THIESSON B, CHICKERING D M, HECKERMAN D, et al. ARMA time-series modeling with graphical models[ C ]//Proceedings of the Twentieth Conference on Uncertainty in Artificial InteUigenee, Banff, Canada: AUAI Press ,2004:552 - 560.
  • 8LIU J. On stationarity and asymptotic inference of bilinear time series models[J]. Statistiea Siniea, 1992(2) : 479 - 494.
  • 9Box George,D Pierce. Distribution of autocorrelation in autoregressive moving average time series models[J].Journal of the American statistician,2007,(05):23-30.
  • 10Box,George,Gwilym Jenkins. Time series analysis,forecasting,and control[M].San Francisco,Calif.:Holden Day,1976.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部