摘要
利用递归数列、同余式和平方剩余几种初等方法,证明了不定方程x3+27=7y2仅有整数解(x,y)=(-3,0),(1,±2);给出了x3+27=7y2的全部整数解.
In this paper,the author has proved that the Diophantine equation x^3 + 27 = 7y^2 has only an integer solution(x,y) = ( -3,0) ,( 1, ±2) and then gives all integer solution of x^3 +27 =7y^3 by using the elementary methods such as recursive sequence, congruent fomula and quadratic residue
出处
《重庆工商大学学报(自然科学版)》
2007年第4期325-327,共3页
Journal of Chongqing Technology and Business University:Natural Science Edition
关键词
不定方程
整数解
递归数列
平方剩余
indeterminate equation
integer solution
recursive sequence
quadratic residue