期刊文献+

具有连续分布时滞的非线性中立型双曲微分方程解的振动性 被引量:6

Oscillation criteria for nonlinear neutral hyperbolic equations with continuously distributed delays
下载PDF
导出
摘要 讨论了一类具有连续分布时滞的中立型双曲方程解的振动性,运用Philos方法,得到了这类方程边值问题解的若干振动准则,这些结果实质性地推广和改进了这一方向上已有的工作. In this paper,the discuss the oscillation of neutral hyperbolic differential equations with continuously distributed delay,and by using Philos' method,obtain some new oscillation criteria of boundary value problem of the abovmentioned equations,which in substance generalije and improve the known results of this direction of scientific sesearches.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期6-10,共5页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10471030) 黑龙江省教育厅科学技术研究项目(10553027 10551248)
关键词 中立型 连续分布时滞 双曲微分方程 振动准则 neutral type continuously distributed delay hyperbolic equation oscillation criterion
  • 相关文献

参考文献9

  • 1刘安平,何猛省.非线性中立双曲型时滞偏微分方程解的振动性质[J].应用数学和力学,2002,23(6):604-610. 被引量:31
  • 2崔宝同,俞元洪,林诗仲.具有时滞的双曲型微分方程解的振动性[J].应用数学学报,1996,19(1):80-88. 被引量:76
  • 3BAINOV D D,CUI B T,MICHEV E.Force oscillation of certain hyperbolic equations of neutral type[J].J Comput Appl Math,1996,72:309-318.
  • 4LI W N.Oscillation properties for systems of hyperbolic differential equations of neutral type[J].J Math Anal Appl,2000,248:369-384.
  • 5LUO JIAOWAN,LIU ZHENGRONG,YU YUANHONG.Oscillation theorems for hyperbolic equations of neutral type[J].Bull,Inst Math Acad Sinica,2001,29:135-145.
  • 6YU YUANHONG,CUI BAOTONG.Sscillation of solutions of hyperbolic equations of neutral type[J].Acta Math Appl Sinica,1994,10:102-106.
  • 7崔凤午,魏凤英.具有连续时滞的渐近周期Lotka-Volterra斑块系统的持久性和全局稳定性[J].东北师大学报(自然科学版),2006,38(4):13-16. 被引量:2
  • 8YURI V ROGOVCHENKO.On oscillation of a second order nonlinear delay differential equation[J].Acta Math Appl Sinica,1994,10:102-106.
  • 9CH G PHILOS.Oscillation theorems for linear differential equations of second order[J].Arch Math,1989,53:483-492.

二级参考文献16

共引文献99

同被引文献50

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部