摘要
本文针对基因遗传算法中杂交率和变异率的难以选取问题,提出了一种自适应基因遗传算法.该方法利用降半Г分布函数对杂交率和变异率进行自适应调整,以保证群体的多样性和进化过程的稳定性,克服算法的未成熟收敛问题.最后以故障诊断知识获取为例,阐述该方法的有效性.
In this paper, an adaptive genetic algorithm is proposed to solve the problem of choosing the probabilities of crossover and mutation. A special function is defined to adptively adjust the above two parameters, which garantees the diversity and stability of genetic algorithm and avoids its premature convergence. Application examples of diagnostic knowlege acquisition de-mostrate that the proposed approach is more effective than standard genetic algorithm.
出处
《系统工程与电子技术》
EI
CSCD
1997年第7期67-72,共6页
Systems Engineering and Electronics
基金
国家重点自然科学基金
江苏省应用基础基金资助课题
关键词
遗传算法
知识获取
自适应基因算法
Genetic algorithm, Crossover probability, Mutation probability, Knowledge acquisition.