摘要
通过对微粒群优化算法的分析,提出了一种用微分方程组描述的微粒群优化算法——微分进化微粒群优化(DEPSO)算法,并利用传递函数对DEPSO算法的收敛性进行分析.在此基础上,通过引入PID控制器以控制DEPSO算法的动态进化行为,以增强微粒产生的多样性,从而改进微粒群优化算法的全局收敛性.仿真结果表明了此方法的有效性.
Through analysis to particle swarm optimization (PSO) algorithm, a new modified particle swarm optimization algorithm described by differential equation-differential evolutionary particle swarm optimization (DEPSO) algorithm is proposed, and the convergence of this algorithm is analyzed with translation function. To enhance the diversity of swarm and improve the global convergence of PSO algorithm, PID controller is introduced to control dynamic evolutionary behavior of DEPSO algorithm. Simulation results are proved to illustrate the effectiveness of the algorithm.
出处
《系统工程学报》
CSCD
北大核心
2007年第3期328-332,共5页
Journal of Systems Engineering
基金
国家自然科学基金资助项目(60674104)
关键词
微粒群算法
微分进化微粒群算法
PID控制器
particle swarm optimization
differential evolutionary particle swarm optimization
PID controller