期刊文献+

基于带近邻因子的粒子群算法的非线性系统辨识

Nonlinear System Identification Based on Particle Swarm Optimization with Near Neighborhood Factor
下载PDF
导出
摘要 针对非线性系统辨识的问题,提出了一种改进的粒子群算法。该算法引入近邻因子,增加了当前粒子的社会学习功能,可有效克服基本粒子群算法易陷于局部最优解的常见弊病。算法对未知非线性系统具有充分的逼近能力,对噪声不敏感,实现了对一类非线性系统的有效辨识。 A modified particle swarm optimization algorithm for nonlinear system identification is presented. By using a near neighborhood factor, each particle is attracted towards the best previous positions visited by its neighbors. The proposed algorithm emphasizes the social learning of particles, so it can effectively overcome the shortcoming of getting into local optimum by the classical algorithm. The nonlinear System identification and the related experiment analysis based on the modified particle swarm optimization algorithm presented show the good performance.
作者 田谦益 李莉
出处 《计算机与现代化》 2007年第7期16-18,29,共4页 Computer and Modernization
关键词 近邻因子 粒子群优化算法 非线性系统辨识 near neighbor factor PSO nonlinear identification
  • 相关文献

参考文献5

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[A].Proceedings of IEEE International Conference on Neural Networks[C].IEEE Service Center,Piscataway,NJ,1994.1942-1948.
  • 2Eberhart R C,Hu X.Human tremor analysis using particle swarm optimization[A].Proceedings of IEEE Congress on Evolutionary Computeration 1999[C].IEEE Service Center,Piscataway,NJ,Washington D C,1999.1927-1930.
  • 3Voss M S,Feng X.A new methodology for emergent system identification using particle swarm optimization (PSO) and the group method of data handling (GMDH)[A].Proc.Genetic and Evolutionary Computation Conference[C].New York,USA,2002.1227-1232.
  • 4Veeramachaneni K,Peram T,Mohan C K,Osadciw L A.Optimization using particle swarms with near neighbor interactions[A].Lecture Notes in Computer Science (LNCS) No.2723:Proceedings of the Genetic and Evolutionary Computation Conference 2003 (GECCO 2003)[C].Chicago,IL,USA,2003.110-121.
  • 5Narendra K S,Parthasarathy K.Identification and control of dynamical systems using neural networks[J].IEEE Trans N N,1990,1(1):4-27.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部