摘要
推导并建立了基于混合棱边/节点元的非线性全矢量有限元模型,提供了相应的迭代过程以获得强光注入下的稳定解,并利用该模型分别分析了非线性单模光纤和高非线性光子晶体光纤在线性状态和强光注入下的色散特性,数值结果与已发表的文献结论吻合良好,证明了所建立模型的准确性和有效性.
A nonlinear full-vector finite element model (FEM) is deduced and implemented based on the hybrid edge/nodal element. Serf-consistent iteration method is presented for the steady-state analysis of nonlinear optical fibers. By using this model, dispersion properties of nonlinear single-mode fiber and highly nonlinear photonic crystal fiber are investigated, under linear state and high input power, respectively. The numerical results are in good agreement with those reported in literature, which confirms the model's correctness and effectiveness.
出处
《吉首大学学报(自然科学版)》
CAS
2007年第3期64-69,共6页
Journal of Jishou University(Natural Sciences Edition)
基金
国家自然科学基金资助项目(60372100
60507007)
关键词
非线性
色散
光子晶体光纤
有限元
nonlinear
dispersion
photonic crystal fiber
fmite element method