期刊文献+

多模角锥喇叭设计方法的改进 被引量:4

An Improved Method for Designing Multimode Pyramidal Horn
下载PDF
导出
摘要 本文首先应用数值积分方法求解三模方角锥喇叭的辐射场分布,以两主平面方向图差趋近零为判据,确定模比取值区间为0.68~0.73.以求解模匹配矩阵方程的方法,较为准确地获得变截面处的模比和相位,然后对通常运用的无限长角锥波导的传播常数公式进行修正,计算基模与TE12/TM12模在喇叭口处的相位差,最后将理论计算与实验进行了比较,并讨论了展宽频带的途径. On the basis of the difference of the patterns in two principal planes of a multimode pyramidal horn that are predicted by numerical method,the mode ratio is determined to be inthe range from 0. 68 to 3. 73. By means of solving a set of mode matching matrix equations,themode ratio and phase at a E-plane symmetrie step in a rectangular waveguide are accurately obtained. The usually used formula of propogation constant of an infinite extension taper rectangularwaveguide is revised so that the phase difference between TE10 and TE12/TM12 modes at the hornaperture can be predicted more reasonably. The results from theoretical calculation and experimentare compared,and the ways to broaden the band are discussed.
作者 钟哲夫
出处 《电子学报》 EI CAS CSCD 北大核心 1997年第6期81-84,共4页 Acta Electronica Sinica
关键词 多模角锥喇叭 数值积分 模匹配 微波天线 Multimode pyramidal horn,Numerical method,Mode matching
  • 相关文献

参考文献1

  • 1Shih Y C,IEEE MTT-S,1985年

同被引文献22

  • 1秋实,高红卫,焦永昌,刘国治,张福顺,侯青,贾鹏.E面和H面方向图等化的双模圆锥喇叭设计[J].强激光与粒子束,2005,17(8):1235-1238. 被引量:4
  • 2钟哲夫,刘盛纲.用束波导与真空椭圆软波导传输的高功率微波发射系统研究[J].强激光与粒子束,1996,8(3):337-341. 被引量:6
  • 3黄宏嘉.微波原理[M].北京:科学出版社,1960..
  • 4Kishek R A, Lau Y Y. Multipactor discharge on a dielectric[J]. PhysRev Lett ,1998,80:193-196.
  • 5Kim H C, Verboncoeur J P. Transition of window breakdown from vacuum multipactor discharge to RF plasma[J]. Phys Plasmas, 2006,13: 123506.
  • 6章日荣.抛物面天线及高效率喇叭[M].北京:人民邮电出版社,1977.
  • 7朱晓欣,常超,梁铁柱,等.X波段多模喇叭馈源的理论分析和数值模拟[C]//第7届高功率微波研讨会论文集.2008:670-675.
  • 8BENFORD James.高功率微波[M].2版.北京:国防工业出版社,2009.
  • 9章日荣.波纹喇叭[M].北京:人民邮电出版社,1983.
  • 10WEXI.ER A. Solution of waveguide discontinuities by mo- dal analysis [J]. IEEE Trans. Microwave Theory Tech. , 1967,15(9) : 508-517.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部