摘要
设Fourier变换将z的函数变换成γ的函数,则用谱域法计算z方向的脉冲磁(电)流产生的z方向的磁(电)场时,不能计算出一些特殊点的场.本文从理论上证明了当场点与源点具有相同的横坐标时,Fourier反交换不收敛.源是三角、正弦等函数时,则不存在不收敛性.
Suppose the Fourier transform converts functions of z to functions of the transform variable Y. When the Spectral Domain Method is used to calculate z component of magnetic (electric) field,which is induced by pulse magnetic (electric) current in z direction,it can' t provide the field at some special points. When the field point has the same transverse coordinate with the source POint,the inverse Fourier transform is nonconvergent. When the source is triangle functionsine function etc.,the nonconvergent disappears. This paper supplies the proof of this point ofview.
出处
《电子学报》
EI
CAS
CSCD
北大核心
1997年第6期97-99,共3页
Acta Electronica Sinica
基金
国家自然科学基金
国家教委博士点基金
关键词
谱域法
积分方程
脉冲函数
电磁场
源展开函数
Spectral domain method,Integral equation,Pulse function,Nonconvergent