期刊文献+

碳、氮化硼纳米管与纳米豆荚的拉伸与压缩特性 被引量:2

Tensile and Compressive Properties for C,BN Nanotubes and Nanopeapods
下载PDF
导出
摘要 采用分子动力学方法,模拟了(10,10)碳、氮化硼纳米管及纳米豆荚的轴向拉伸与压缩.根据模拟结果,讨论了它们拉伸与压缩力学特性的差异.研究表明:①碳纳米管及碳豆荚的拉伸失效为剪切破坏,而氮化硼管及氮化硼豆荚为拉断模式;②碳管及碳豆荚的拉伸性能无明显差异,均明显优于氮化硼管及氮化硼豆荚,氮化硼豆荚的拉伸性能优于氮化硼管;③碳管及碳豆荚的压缩失效形式为管壁的局部屈曲,而氮化硼管及氮化硼豆荚为管壁原子的重构;④碳与氮化硼纳米管,以及碳与氮化硼豆荚的压缩性能分别相当,但两种豆荚的压缩性能明显优于两种空纳米管. By using molecular dynamics(MD) method, the axial tension and compression of the (10, 10) carbon, BN nanotubes and nanopeapods were simulated. According to the simulative results, the differences of their tensile and compressive properties were analyzed and discussed. The results show that ①carbon tube and peapod under tension have the shear-failure mode, and the BN tube and peapod the tension-failure mode;②the carbon tube and peapod do not have obvious difference and are both superior to the BN tube and peapod in tensile properties, and the tensile properties of the BN peapod are superior to those of the hollow BN tube; ③ the compressive failure of the carbon tube and peapod can be attributed to the locally-buckling on their walls, while the failure of the BN tube and peapod is the local reconfiguration of atoms on their walls; ④carbon and BN nanotubes, as well as carbon and BN nanopeapods, have the comparative compressive properties, and the two kinds of nanopeapods are much better than the two kinds of hollow nanotubes in compressive properties.
作者 沈海军
出处 《纳米技术与精密工程》 EI CAS CSCD 2007年第2期129-133,共5页 Nanotechnology and Precision Engineering
关键词 氮化硼 纳米管 纳米豆荚 拉伸与压缩 carbon BN nanotube nanopeapod tension and compression
  • 相关文献

参考文献21

  • 1[1]Henk W C,Postma T T,Yao Z,et al.Carbon nanotube singleelectron transistors at room temperature[J].Science,2001,293:76-79.
  • 2[2]Dai H J,Hafner J H,Rinzler A G,et al.Nanotubes as nanoprobes in scanning probe microscopy[J].Nature,1996,384:147-150.
  • 3沈海军,穆先才.“Y”形、竹节形与直纳米碳管拉伸力学特性的有限元分析[J].材料科学与工程学报,2005,23(3):321-324. 被引量:13
  • 4张立德,张玉刚.非碳纳米管研究的新进展[J].物理,2005,34(3):191-198. 被引量:8
  • 5[5]Bengu E,Marks L D.Single-walled BN nanostructures[J].Phys Rev Lett,2001,86:2385.
  • 6沈海军.C,SiC和BN纳米管熔化与拉伸特性的分子动力学研究[J].石油化工高等学校学报,2006,19(4):60-64. 被引量:2
  • 7[7]Holger F B,Traian D,Gustavo E,et al.Mechanically induced defects and strength of BN nanotubes[J].Phys Rev B,2002,65:041406-1-041406-4.
  • 8[8]Kang Jeong Won,Hwang Ho Jung.Comparison of C60 encapsulations into carbon and boron nitride nanotubes[J].J Phys Condens Matter,2004,16:3901-3908.
  • 9[9]Choi W Y,Kang J W,Hwang H J.Bucky shuttle memory system based on boron-nitride nanopeapod[J].Physica Low-Dimensional Systems & Nanostructures,2004,23 (1/2):135-140.
  • 10[10]Shen Haijun.Compressive and tensile mechanical properties of Ar-filled carbon nunopeapods[J].Materials Letters,2006,62(2):527-530.

二级参考文献46

  • 1Chen Rong Liang Wenping(Department of Chemical Sciences, NSFC, Beijing 100085).Recent Research Progress in Inorganic Chemistry in China[J].Science Foundation in China,2002,10(2):45-48. 被引量:1
  • 2沈海军.非线性杆元法在C_(60)晶体薄膜力学特性分析中的应用[J].材料科学与工程学报,2005,23(2):204-206. 被引量:3
  • 3Li CY, Chou TW. A structural mechanics approach for the analysis of carbon nanotubes[J]. Int. J. Solids Struct., 2003, 40:45-49.
  • 4LM Peng, ZL Zhang, ZQ Xue, QD Wu, ZN Gu, Pettifor DG.Stability of carbon nanotubes: How small can they be? [J]. Phys.Rev. Lett., 2000 85: 3249-3252.
  • 5M. Menon, D. Srivastava. Carbon nanotube T-Junetions: nanoscale metal-semiconductor-metal contact device [J]. Phys. Rev. Lett.1997 79:4453.
  • 6BI Yakobson, CJ Brabec, J. Bernholc. Nanomechanics of Carbon Tubes: Instabilities Beyond the Linear Response [J]. Phys. Rev.Lett., 1996 76:2511.
  • 7Chico L, Crespi VH, Benedict LX. Pure carbon nanotube device:nanotube heterojunction[J]. Phys Rev Lett., 1996, 76: 971-974.
  • 8Yu M.F, Lourie O, Dyer M.J, Moloni K, Kelly T.F, Ruoff R. S.Strength and breaking mechanism of multi-walled carbon nanotubes under tensile load[J]. Science, 2000, 287(5453) :637-640.
  • 9Treacy M. M. J, Ebbesen, T. W, Gibson J.M. Exceptionally high Young' s modulus observed for individual nanotubes [J]. Nature,1996, 381(6548): 678-680.
  • 10Nan Yao. Young(s modulus of single-walled carbon nanotube[J]. J.Appl. Phys. 1998, 84(4):1939-1943.

共引文献39

同被引文献27

  • 1张晨利,沈惠申.碳纳米管在简单荷载作用下的变形屈曲行为研究[J].力学季刊,2005,26(4):549-554. 被引量:2
  • 2陈裕,沈海军.单壁及双壁纳米碳管径向压缩特性的分子动力学研究[J].原子与分子物理学报,2007,24(2):352-356. 被引量:4
  • 3吴杨,赵登冰,金庆华,王玉芳,李宝会,丁大同.纳米管的第一性原理计算[J].南开大学学报(自然科学版),2007,40(3):21-26. 被引量:1
  • 4Iiima S. Helical microtubules of graphitic carbon [ J]. Nature, 1991, 354:56.
  • 5Chopra N G, Luyken R J, Cherrey K, et al. Boron nitride nanotubes I J]. Science, 1995, 269:966.
  • 6Loiseau A, Willaime F, Demoncy N, et al. Boron nitilde nanotubes with reduced numbers of layers synthe- sized by arc discharge [ J]. Phys. Rev. Lett., 1996, 76:4737.
  • 7Y. Rosenfeld Hacohen, Grunbaum E, Tenne R, et al. Cage structures and nanotubes of NiCl2 [ J]. Nature, 1998, 395:336.
  • 8Patzke G R, Krumeich F, Nesper R. Oxidic nanotubes and nanorods: anisotropic modules for a future nan- otechnology [ J]. Angew. Chem. Int. Ed., 2002, 41:2446.
  • 9Cote M, Cohen M E. Theoretical study of the structural and electronic properties of GaSe nanotubes [ J ]. Phys. Rev. B, 1998, 58:4277.
  • 10Lee S M, Lee Y H, Hwang Y G, et al. Stability and electronic structure of GaN nanombes from densityfunctional calculations [ J]. Phys. Rev. B, 1999, 60: 7788.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部