期刊文献+

一种自组织小波神经网络定子电阻估计器 被引量:1

Stator resistance estimator based on self-organization wavelet neural network
下载PDF
导出
摘要 定子电阻的准确估计是改善直接转矩控制低速性能的关键技术.为了提高定子电阻的在线估计精度和速度,本文将小波分析、自组织算法和神经网络技术相结合,提出了一种自组织小波神经网络定子电阻估计器.该网络继承了小波分析优异的局部特性和神经网络的自学习能力,具有较高的估计精度.并采用自组织算法对小波元的数量进行了离线优化,大大简化了网络结构,提高了在线估计的实时性. Exact estimation of stator resistance is the key technology to improve the low speed performance of direct torque control. To improve the accuracy and speed of on-line stator resistance estimation, a self-organization wavelet neural network estimator is proposed in this paper by combining wavelet analysis, self-organization algorithm and neural network technology together. The proposed network inherits the excellent local performance of wavelet analysis and the self-learning ability of neural network to get high estimation accuracy, and its wavelet number is optimized off-line by using self-organization algorithm to simplify the network structure and improve the on-line estimation speed.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2007年第3期371-373,379,共4页 Control Theory & Applications
基金 湖南省自然科学基金资助项目(06JJ50121).
关键词 直接转矩控制 小波 神经网络 自组织 direct torque control wavelet neural network self-organization
  • 相关文献

参考文献9

  • 1许大中.交流电机调速理论[M].杭州:浙江大学出版社,1994..
  • 2李艳,邵曰祥,邵世煌,方建安.带有神经网络估计器的模糊直接转矩控制[J].电气传动,1997,27(1):11-16. 被引量:16
  • 3戴永彬,王艳秋.基于直接转矩控制的模糊神经网络定子电阻观测器的实现[J].电气自动化,2003,25(2):5-5. 被引量:1
  • 4CABRERA L A,ELBULUK M E,HUSAIN I.Tuning the stator resistance of induction motors using artificial neural network[J].IEEE Trans on Power Electronics,1997,12(5):779-787.
  • 5CAO C Z,LU M P,ZHANG Q D,et al.Research on online identification of the stator resistance using wavelet neural network[C]//Proc of the 3rd Int Conf on Machine Learning and Cybernetics.Shanghai:Shanghai Jiao Tong University Press,2004:3073-3077.
  • 6ZHANG Q,BENVENISTE A.Wavelet networks[J].IEEE Trans on Neural Networks,1992,3(5):889-898.
  • 7PATI Y C,KRISHNAPRASAD P S.Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations[J].IEEE Trans on Neural Networks,1993,4(1):73-85.
  • 8TSATSANIS M K,GIANNAKIS G B.Time-varying system identification and model validation using wavelets[J].IEEE Trans on Signal Processing,1993,41(12):3512-3523.
  • 9DELYON B,JUDISKY A,BENVENSITE A.Accuracy analysis for wavelet approximations[J].IEEE Trans on Neural Networks,1995,6(2):332-348.

二级参考文献4

共引文献26

同被引文献7

  • 1SBARBARO D, HUNT K J, GAWTHROP P J. An artificial neural network for milling application[J]. Steel limes, 1995, 223(4): 137 - 138.
  • 2PLICHLER R, PFAFFERMAYER M. On-line optimization of the rolling process-a case of neural networks[J]. Steel Times, 1996, 224(9): 310 - 311.
  • 3DAI X Z, LUI J, FENG C, et al. MIMO system invertibility and decoupling control strategies based on ANN αth order inversion[J]. IEE Proceedings: Control Theory and Applications, 2001, 148(2): 125 - 136.
  • 4ZHANG J, WALTER G G, MIAO Y B, et al. Wavelet neural networks for function learning[J]. 1EEE Transactions on Signal Processing, 1995, 43(6): 1485 - 1497.
  • 5HUANG M, CUI B T. Optimization of wavelet neural networks based on structural risk minimization[J]. Dynamics of Continous Discrete and Impulsive Systems(Suppl S), 2006, 13(3): 1185 - 1188.
  • 6戴先中,何丹,陈毓,王勤.基于NNα阶逆的非线性大时延系统预测控制[J].控制理论与应用,2000,17(4):589-592. 被引量:6
  • 7徐湘元,毛宗源.时滞系统的神经网络预测控制 (英文)[J].控制理论与应用,2001,18(6):932-934. 被引量:20

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部