摘要
关联分类已成为数据挖掘研究的热点问题之一.为解决大规则关联分类问题,本文提出了基于原子规则的多步分类方案,并对作者提出的多步原子关联规则分类新技术进行了深入的理论研究.与同类关联分类方法(如CBA)比较,本文提出的方法具有学习速度快、分类准确度高的优点.
The principles of multi-step classification based on atomic rules are described in this paper. A related scheme based on atomic rules is proposed to tackle the problem of associative classification in the context of large-scale datasets. Compared to the well-known associative classification algorithm of CBA, the proposed approach has the advantage of fast speed and high accuracy.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2007年第3期471-474,共4页
Control Theory & Applications
基金
广东省科技攻关资助项目(2003C101007)
广州市科技计划基金资助项目(2004Z3-E0091).
关键词
数据挖掘
机器学习
关联规则
分类
data mining
machine learning
association rules
classification