摘要
本文关注如下的二阶隐式微分方程f(t ,u(t) ,u′′(t)) =0, a .e .t∈(0,1) ,边值条件为u(0) =u(1) =0.利用上下解方法和迭代技巧研究了该问题的可解性并得到了一些解的存在性结果.
We are concerned with the second-order implicit differential equation as follows: f(t,u″(t),u(t)) =0, a,e,t∈(0,1) with boundary condition u(0) = u(1) = 0. Lower and upper solutions method and iterative technique are employed to study the solvability of this problem and some existence results are obtained.
出处
《应用数学》
CSCD
北大核心
2007年第3期473-477,共5页
Mathematica Applicata
基金
Supported by China National Science Foundation Grant(60574075)
Science Foun-dation of Education Office of Hubei Province Grant (Q20061101)
关键词
二阶隐式微分方程
上下解方法
迭代方法
存在性
Second-order implicit differential equation
Lower and upper solutions method
Iterative technique
Existence