期刊文献+

基于听觉感知和概率神经网络的语音识别模型

Speech recognition model based on auditory perception and Probabilistic Neural Network
下载PDF
导出
摘要 提出了一种基于Bark子波变换和概率神经网络(PNN)的语音识别模型。利用符合人耳听觉特性的Bark滤波器组进行信号重构并提取语音特征,然后利用训练好的概率神经网络进行识别。通过训练大量语音样本来构成语音识别库,并建立综合识别系统。实验结果表明该方法与传统的LPCC/DTW和MFCC/DWT方法相比,识别率分别提高了14.9%和10.1%,达到了96.9%的识别率。 The paper proposes a speech recognition model based on Bark Wavelet Transform and Probabilistic Neural Network (PNN).According to the group of filters which is similar to human auditory system,reconstruct the signal to abstract speech features then do the recognition work by trained PNN.By training a large number of speech samples,speech identification database is constructed,and the integrated recognition system is then built.The experiment results show that comparing with traditional ways of LPCC/DTW and MFCC/DTW,this method can increase the recognition rate by 14.9% and 10.1% ,and it can attain recognition rate of 96.9%.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第19期30-31,44,共3页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60572076) 江苏省高校自然科学研究计划项目(the Natural Science Research Project of Higher Education of Jiangsu Province of China under Grant No.05JKB510113)
关键词 Bark子波 概率神经网络 特征提取 语音识别 Bark wavelet Probabilistic Neural Network (PNN) feature abstraction speech recognition
  • 相关文献

参考文献9

  • 1Specht D F.Probabilistic neural networks[J].Neural Networks,1990,3(2):109-118.
  • 2Traunmullar H.Analytical expression for the tonotopic sensory scale[J].Journal of the Acoustical Society of America,1990,88:97-100.
  • 3Wilson B,Finley C C,Lawson D,et al.Better speech recognition with cochlear implants[J].Nature,1991,352:236.
  • 4Huang D S.Radial basis probabilistic neural networks:model and application EJ2[J].International Journal of Pattern Recognition and Artificial Intelligence,1999,13 (7):1083-1101.
  • 5Huang D S.The pattern recognition system theory based on the neural networks[M].Beijing:Publishing House of Electronic Industry,1996:119-137.
  • 6McDermott H,Mc Kay C,Vandali A.A new portable sound processor for the University of Melbourne/Nucleus Limited multielectrode cochlear implant[J].Journal of the Acoustical Society of America,1992,91 (6):3367-3371.
  • 7Wallenberger E,Battmer R.Comparative speech recognition results in eight subjects using two different coding strategies with the Nucleus 22 channel cochlear implant[J].British Journal of Audiolog,1991,25:371-380.
  • 8付强,易克初.语音信号的Bark子波变换及其在语音识别中的应用[J].电子学报,2000,28(10):102-105. 被引量:22
  • 9陶智,赵鹤鸣,龚呈卉.基于听觉掩蔽效应和Bark子波变换的语音增强[J].声学学报,2005,30(4):367-372. 被引量:39

二级参考文献25

  • 1科恩 L,时频分析:理论与应用,1998年
  • 2Ephraim Y, Malah D. Speech enhancement using a minimum mean-square error log-spectral amplitude estimator.IEEE Trans Acoust Speech Signal Processing. 1985; 33(2):443-445.
  • 3Lockwood P, Boudy J. Experiments with a nonlinear spectral subtractor (NSS), hidden Markov models and projection,for robust recognition in cars. Speech Commun, 1992;11(6): 21,5-228.
  • 4Tsoukalas D E, Mourjopoulos J N, Kokkinakis G. Speech enhancement based on audible noise suppression.IEEE Transactions on SPEECH and Processing. 1997; 5(6):497-514.
  • 5Seok J W,Bae K S.Speech enhancement with reduction of noise components in the wavelet domain.Copyright 1997 IEEE:1323—1326.
  • 6Johnston J D.Transform coding of audio signal using perceptual noise criteria.IEEE J.Select Areas Commun,1983;6(2):314—323.
  • 7Evangelista G,Cavaliere S.Discrete frequency warped wavelets:theory and applications.IEEE Trans.on Signal Processing,1998;46(4):874—885.
  • 8Traunmullar H.Analytical expression for the tonotopic sensory scale.Journal of the Acoustical Society of America,1990;88(61:97—100.
  • 9Daubechies I.Ten lectures on wavelets.Philadelpha:SIAM.1992.
  • 10Deller J,Proakis J,Hansen J.Discrete-time processing of speech signals.Englewood Cliffs.NJ:Prentice—Hall,1993.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部