期刊文献+

量子粒子群算法在易逝品多目标定价中的应用 被引量:1

Quantum-behaved Particle Swarm Optimization for multi-criterion optimal pricing model
下载PDF
导出
摘要 对易逝品的多目标定价问题进行了研究。从利润最大化角度建立易逝品多目标最优定价模型。模型中涉及复杂的需求函数,常规函数极值法不易获得问题解析解,因此引入量子粒子群算法,结合惩罚函数对模型进行演化求解。根据给出的算例分析表明,利用量子粒子群算法,可以快速有效地得到不同订货量下的最优定价与折扣价组合。 Abstract: The problem of multi-criterion optimal pricing model for perishable commodities is mainly studied.According to the principle of profit maximization and based on a discrete demand function,the multi-criterion optimal pricing model for the perishable products is established.Since the model involves some different stochastic distributions of several variables,which is difficult for the normal numerical methods to solve,the Quantum-behaved Particle Swarm Optimization (QPSO) algorithm with a penalty function is introduced to settle it.The experiment results show that by using QPSO method,the optimal prices and discount prices for different inventory levels can be derived quickly and effectively.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第19期237-239,244,共4页 Computer Engineering and Applications
关键词 易逝品 最优定价 多目标优化 惩罚函数 量子粒子群算法 perishable commodities optimal pricing multi -criterion optimization penalty function Quantum -behaved Particle Swarm Optimization (QPSO)
  • 相关文献

参考文献9

  • 1Hwang C L,Yoon K.Multiple attributes decision making methods and applications[M].Berlin Heidelberg:Springer,1981.
  • 2Nahmias S.Perishable inventory theory:review[J].Operations Research,1982,30:680-780.
  • 3Weatherford L R,Bodily S E.A taxonomy and research overview of perishable-asset revenue management:yield management,overbooking,and pricing[J].Operations Research,1992,40(5):831-844.
  • 4Winterfekldt D V,Edwards W.Decision analysis and behavioral research[M].[S.l.]:Cambridge University Press,1998.
  • 5Hepu D,Chung H Y,Robert J.Inter-company comparison using modified TOPSIS with objective weights[J].Computers & Operations Research,2000,27:963-973.
  • 6Young H Chun.Optimal pricing and ordering policies for perishable commodities[J].European Journal of Operational Research,2003,144(1):68-82.
  • 7Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceeding of the 1995 IEEE International Conference on Neural Networks,Perth,Australia,1995:1942-1948.
  • 8Sun J,Xu W B.A global search strategy of Quantum-behaved Particle Swarm Optimization[C]//Proceedings of IEEE Conference on Cybemetics and Intelligent Systems,2004:111-116.
  • 9Parsopoulos K E,Vrahatis M N.Particle swarm optimization method for constrained optimization problems[C]//Proceedings of the 2002Euro-International Symposium on Computation Intelligence,2002:214-220.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部