期刊文献+

基于改进粒子群算法的多目标最优潮流计算 被引量:14

Improved Particle Swarm Optimization Algorithm for Multi-Objective Optimal Power Flow
下载PDF
导出
摘要 针对电力系统多目标最优潮流计算问题,提出一种基于(非劣最优)Pareto解集的改进粒子群算法AL iPSO。用最优值评估选取法求取粒子和全局最优位置,解决目标函数间可能存在的冲突。并将关联度自适应学习应用于多目标优化,提出适合Pareto解特点的适应度设计和随机惯性权策略,克服PSO算法容易早熟而陷入局部最优解的缺点。通过对IEEE 6、IEEE 14节点系统多目标最优潮流计算,验证了该算法的有效性。 An improved particle swarm optimization algorithm called ALiPSO was presented based on pareto optimal set to solve multi-objective OPF problem. The algorithm obtained the particle and the group's best previous position by evaluating and selecting optimal value, and resolved the conflicts among multiple objective functions. The method of adaptive linkage learning was developed. Fitness assignment and random inertia weight strategy were used to avoid getting trapped in local optimal solution arose by prematurity. Case studied on IEEE 6-bus system and 14-bus system showed the effectiveness of the proposed algorithm.
出处 《电力系统及其自动化学报》 CSCD 北大核心 2007年第3期51-57,共7页 Proceedings of the CSU-EPSA
关键词 粒子群优化算法 非劣最优解集 多目标 最优潮流计算 关联度自适应学习 适应度设计 随机惯性权策略 particle swarm optimization pareto optimal set multi-objective optimal power flow (OPF) adaptive linkage learning fitness assignment random inertia weight strategy
  • 相关文献

参考文献12

  • 1杜松怀,侯志俭,邰能灵.松弛节点电压对优化潮流及电力市场经济性的影响[J].中国电力,2002,35(3):35-39. 被引量:4
  • 2王勤,方鸽飞.考虑电压稳定性的电力系统多目标无功优化[J].电力系统自动化,1999,23(3):31-34. 被引量:41
  • 3俞俊霞,赵波.基于改进粒子群优化算法的最优潮流计算[J].电力系统及其自动化学报,2005,17(4):83-88. 被引量:36
  • 4Natsuki Higashi,Hitoshi Iba.Particle swarm optimi-zation with Gaussian mutation[C]//Proceedings of the 2003 IEEE Swarm Intelligence Symposium,Phoenix,USA,2003:72-79.
  • 5刘自发,葛少云,余贻鑫.基于混沌粒子群优化方法的电力系统无功最优潮流[J].电力系统自动化,2005,29(7):53-57. 被引量:74
  • 6Devicharan D,Mohan C K.Particle swarm optimiz-ation with adaptive linkage learning[C]//Proceedings of the 2004 International Conference on Evolutionary Computation.NewYork,USA,23nd,2004,1:530-535.
  • 7Ho S L,Yang Shiyou,Ni Guangzheng,et al.A par-ticle swarm optimization-based method for multiobjective design optimizations[J].IEEE Trans on Magnetics,2005,41(5):1756-1759.
  • 8Eckart Zitzler,Lothar Thiele.Multiobjective evolu-tionary algorithms:a comparative case study and the strength pareto approach[J].IEEE Trans on Evolutionary Computation,1999,3(4):257-271.
  • 9Coello C A,Lechuga M S.MOPSO:a proposal for multiple objective particle swarm optimization[J].IEEE Trans on Evolutionary Computation.,2002,2(4):1051-1056.
  • 10Shi Y,Eberhart R C.Empirical study of particle swarm optimization[C]//Proceeding of the 1999 Congress on Evolutionary Computation.Washington DC,USA,18nd,1999,3:1945-1950.

二级参考文献42

  • 1马晋弢,杨以涵.遗传算法在电力系统无功优化中的应用[J].中国电机工程学报,1995,15(5):347-353. 被引量:144
  • 2Dommel H W,Tinney W F.Optimal power flow solutions[J].IEEE Trans on Power Apparatus and Systems,1968,87(10):1866-1876.
  • 3Kennedy J,Eberhart R.Particle swarm optimization[A].In:Proceedings of IEEE International Confere-nce on Neural Networks[C].1995,4:1942-1948.
  • 4Kassabalidis I N,El-Sharkawi M A,Marks R J,et al.Dynamic security border identification using enhanced particle swarm optimization[J].IEEE Trans on Power Systems,2002,17(3):723-729.
  • 5Naka S,Genji T,Yura T,et al.A hybrid particle swarm optimization for distribution state estimation[J].IEEE Trans on Power Systems,2003,18(1):60-68.
  • 6Momoh J A,Zhu J Z.Improved interior point method for OPF problems[J].IEEE Trans on Power Systems,1999,14(3):1114-1120.
  • 7Zimmerman R,Gan D.MATPOWER:A matlab power system simulation package[Z].Available: http://www.pserc.cornell.edu/matpower.
  • 8Momoh J,EI-Hawary M E,Adapa.A review of selected optimal power flow literature to 1993,Parts Ⅰ and Ⅱ[J].IEEE Trans on Power Systems,1999,14(1):96-111.
  • 9Chen Y L,IEE Proc C,1994年,141卷,6期,554页
  • 10冯治鸿,中国电机工程学报,1992年,12卷,3期

共引文献151

同被引文献161

引证文献14

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部