期刊文献+

应用神经网络-时间序列预测路面平整度 被引量:2

Application of Artificial Neural Network-time Series in Pavement Roughness Prediction
下载PDF
导出
摘要 以神经网络和时间序列分析方法为基础,采用零均值化、标准偏差预处理方法、规则化能量函数法和贝叶斯规则化方法进行BP神经网络建模,利用BP网络对平整度非平稳时序进行趋势项提取,使非平稳监测时序转化为平稳时序以进行常规ARMA时序分析。结合滚动预测方法,建立了适合平整度预测的神经网络时间序列分析联合模型,并以江苏省某高速公路的平整度数据为例进行了预测分析。研究结果表明:新模型的预测精度高、实时可靠,可应用于实际工程。 Based on the principles of artificial neural network and time series analysis, the BP network is established by zero mean method,standard deviation preprocess,regularization energy function and Bayes-regularization to extract the trend term of displacement time series.After the extraction,the displacement time series becomes a balance series,which could be processed by normal ARMA model.In addition,combined with the real-time tracing algorithm,the artificial neural network-time series analysis(united modeling)for nonlinear displacement in geotechnical engineering is proposed. As a test,this modeling is used in IRI prediction of a highway in Jiangsu Province.The results of engineering case indicate that it is reliable with high precision.It is proved that this modeling can be used in practical engineering.
出处 《现代交通技术》 2007年第3期8-11,共4页 Modern Transportation Technology
关键词 路面 平整度 神经网络 时间序列 预测 pavement roughness neural network time series prediction
  • 相关文献

参考文献5

二级参考文献6

  • 1寇雅楠,翁兴中.用神经网络理论预测机场水泥混凝土道面的使用寿命[J].中国公路学报,1997,10(1):16-20. 被引量:19
  • 2刘勇 康力山.非数值并行算法(第二册)——遗传算法[M].北京:科学出版社,1997..
  • 3Burge CJC. A tutorial on support vector machines for pattern recognition[J] .Data Mining and Knowledge Discovery, 1998, (2) :121 - 167.
  • 4Alex J Smola, Bernhard Schoelkopf. A Tutorial on Support Vector Regression[R]. NeuroCOLT2 Technical Report Series, 1998.
  • 5John C Platt. Sequeotial Minimal Optimization:A Fast Algorithm for training Support Vector machines[R].Technical Report,1998
  • 6刘伯莹,姚祖康.沥青路面使用性能预测[J].中国公路学报,1991,4(2):5-15. 被引量:58

共引文献136

同被引文献24

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部