摘要
引入和研究了一般形式的松弛余强制变分不等方程组解的迭代逼近问题:求x1*,x2*,…,x*N∈K,使得〈ρ1T(x2*,x1*)+x1*-x2*,y-x1*〉≥0,y∈K,〈ρ2T(x3*,x2*)+x2*-x3*,y-x2*〉≥0,y∈K,┇〈ρN-1T(x*N,x*N-1)+x*N-1-x*N,y-xN*-1〉≥0,y∈K,其中N≥2是一正整数,ρ,ρ,…,ρ≥0是给定的常数.改进和推广了已知的相应结果.
The author introduces and studies the following approximate solvability problem of generalized system for relaxed cocoercive variational inequalities in Hilbert spaces:
{〈ρ1T(x2^*,x1^*)+x1^*-x2^*,y-x1^*〉≥0,arbitary y∈K,〈ρ2T(x3^*,x2^*)+x2^*-x3^*,y-x2^*〉≥0,arbitary y∈K,…〈ρN-1T(xN^*,xN-1^*)+xN-1^*-xN^*,y-xN-1^*〉≥0,arbitary y∈K.
The results presented in the paper generalize and improve the corresponding results.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第3期467-471,共5页
Journal of Sichuan University(Natural Science Edition)
基金
四川省教育厅重点资助项目
关键词
松弛映象
余强制映象
松弛余强制变分不等方程组
投影方法
relaxed mapping, cocoercive mapping, relaxed cocoercive nonlinear variational inequality, projectoion method