期刊文献+

Hilbert空间中一般形式的松弛余强制变分不等方程组解的迭代逼近问题 被引量:2

Iterative approximation of solutions of generalized system for relaxed cocoercive variational inequalities in hilbert spaces
下载PDF
导出
摘要 引入和研究了一般形式的松弛余强制变分不等方程组解的迭代逼近问题:求x1*,x2*,…,x*N∈K,使得〈ρ1T(x2*,x1*)+x1*-x2*,y-x1*〉≥0,y∈K,〈ρ2T(x3*,x2*)+x2*-x3*,y-x2*〉≥0,y∈K,┇〈ρN-1T(x*N,x*N-1)+x*N-1-x*N,y-xN*-1〉≥0,y∈K,其中N≥2是一正整数,ρ,ρ,…,ρ≥0是给定的常数.改进和推广了已知的相应结果. The author introduces and studies the following approximate solvability problem of generalized system for relaxed cocoercive variational inequalities in Hilbert spaces: {〈ρ1T(x2^*,x1^*)+x1^*-x2^*,y-x1^*〉≥0,arbitary y∈K,〈ρ2T(x3^*,x2^*)+x2^*-x3^*,y-x2^*〉≥0,arbitary y∈K,…〈ρN-1T(xN^*,xN-1^*)+xN-1^*-xN^*,y-xN-1^*〉≥0,arbitary y∈K. The results presented in the paper generalize and improve the corresponding results.
作者 罗元松
机构地区 宜宾学院
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第3期467-471,共5页 Journal of Sichuan University(Natural Science Edition)
基金 四川省教育厅重点资助项目
关键词 松弛映象 余强制映象 松弛余强制变分不等方程组 投影方法 relaxed mapping, cocoercive mapping, relaxed cocoercive nonlinear variational inequality, projectoion method
  • 相关文献

参考文献7

  • 1Chang S S,Lee H W J,Chan C K.Generalized system for relaxed cocoercive variational inequalities in Hilbert spaces[J].Applied Math.Letters,2007,20(3):329.
  • 2Chang S S,Cho Y J,Kin J K,On the two-step projection methods and applications to variational inequalities[J].Math.Inequal,Appl,2006(in press).
  • 3Verma R U.Projection methods,Algorithm and a new system of nonlinear variational inequalities[J].Computes and Mathematics with Application,2001,41:1025.
  • 4Verma R U.Generalized system for relaxed cocoercive variational inequalities and projeciton methods[J],J Optim Theory Appl,2004,121:203.
  • 5Verma R U.General convergence analysis for two-step projection methods application to variational problems[J].Appl Math Lett,2005,18(11):1286.
  • 6Xiu N H,Zhang J Z.Local convergence analysis of projection type algorithms:Unified approach[J].J Optim Theory Appl,2002,115:211.
  • 7Chang S S,Lee H W J,Wu D P.A class of random complementarity problems in Hilbert spaces[J].Math Commu,2005,10:95.

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部