期刊文献+

一类Boussinesq方程的Sobolev指数 被引量:3

Sobolev exponent of the damped Boussinesq equation
下载PDF
导出
摘要 研究了如下Boussinesq方程Cauchy问题的整体解:utt-aΔutt-2bΔut=-cΔ2u+Δu-αu+βΔ(up),u(x,0)=ε2(x),ut(x,0)=ε2ψ(x).其中x∈Rn,n≥2,t>0,a,b,c,α是正常数,β∈R,ε>0是小参数,p≥2是正整数.当a+c-b2>0时,得到了上面问题整体解的存在性,而且得到方程的Sobolev指数是n/2-1/(p-1). The authors studied the global solution of the Cauchy problem for the following Boussinesq equation: utt-αΔutt-2bΔut=-cΔ^2u+Δu-αu+βΔ(u^p),u(x,0)=ε^2φ(x),ut(x,0)=ε^2ψ(x),where x∈R^n,n≥2,t〉0,α,b,c and α are positive constants, β ∈ R,eis a small positive parameter,p≥2 is positive integer. For the case α + c - b^2 〉 0, the well-posedness of the global solution for the equation is studied. It is proved that the Sobolev exponent of the equation is n/2-1/p-1.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第3期490-494,共5页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(10571126)
关键词 BOUSSINESQ方程 CAUCHY问题 SOBOLEV指数 Boussinesq equation, cauchy problem, sobolev exponent
  • 相关文献

参考文献10

  • 1Boussinesq J.Theorie des ondes et de remous qui se propagent le long d'un canal rectangulaire horizontal,en communiquant au liquide contene dans ce canaldes vitesses sensiblement pareilles de la surface au foud[J].J Math Pures Appl Set,1872,2(17):55.
  • 2Tsutsumi M,Matahashi T.On the Cauchy problem for the Boussinesq-type equation[J].Math Japonica,1991,36:371.
  • 3Manoranjan V S,Ortega T,Sanz-Serna J M.Soliton and anti-soliton interaction in the "good" Boussinesq equation[J].J Math Phys,1988,29:1964.
  • 4Kalantarov V K,Ladyzhenskaya O A.The occurrence of collapse for quasilinear equation of parabolic and hyperbolic types[J].J Sov Maths,1978,10:53.
  • 5Clarkson P.New exact solution of the Boussinesq equation[J].Eur J Appl Maths,1990,1:279.
  • 6Varlamov V V.On the Cauchy problem for the damped Boussinesq equation[J].Differential and Integral Equations,1996,9(3):619.
  • 7Varlamov V V.On the initial boundary value problem for the damped Boussinesq equation[J].Discrete and Continuous Dynamical System,1998,4(3):431.
  • 8Lai S Y,Wu Y H.The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation[J].Discrete and Continuous Dynamical System,2003,3(3):401.
  • 9Jeffery R,Michael R.Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension[J].J Duke Math,1982,49(2):397.
  • 10王颖,赖绍永.一类Boussinesq方程整体解的渐近理论[J].四川师范大学学报(自然科学版),2005,28(2):158-161. 被引量:4

二级参考文献12

  • 1李楠,赖绍永.一类半线性Boussinesq方程Cauchy问题的渐近近似解[J].四川师范大学学报(自然科学版),2004,27(6):574-578. 被引量:1
  • 2Boussinesq J. Theorie des ondes et de remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contene dans ce canaldes vitesses sensiblement pareilles de la surface au foud[J]. J Math Pures Appl Ser,1872,17(2):55~108.
  • 3Tsutsumi M, Matahashi T. On the Cauchy problem for the Boussinesq-type equation[J]. Math Japonicae,1991,36:371~379.
  • 4Manoranjan V S, Ortega T, Sanz-Serna J M. Soliton and anti-soliton interaction in the "good" Boussinesq equation[J]. J Math Phys,1988,29:1964~1968.
  • 5Hirota R. Exact N- soliton solutions of the wave equation of long waves in shallow water and in nonlinear lattice[J]. J Math Phys,1973,14:810~814.
  • 6Clarkson P. New exact solution of the Boussinesq equation[J]. Eur J Appl Maths,1990,1:279~300.
  • 7Varlamov V V. On the Cauchy problem for the damped Boussinesq equation[J]. Differential and Integral Equations,1996,9(3):619~634.
  • 8Varlamov V V. On the initial boundary value problem for the damped boussinesq equation[J]. Discrete and Continuous Dynamical System,1998,4(3):431~444.
  • 9Lai S Y, Wu Y H. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation[J]. Discrete and Continuous Dynamical System,2003,3(3):401~408.
  • 10林群,赖绍永.一类半线性复Boussinesq方程的整体解[J].四川师范大学学报(自然科学版),2002,25(5):468-471. 被引量:5

共引文献3

同被引文献22

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部