期刊文献+

一种在线互相似流群发现方法

An Approach to Online Discovery of Mutual Similar Stream Group
下载PDF
导出
摘要 针对基于滑动窗口的互相似流群在线发现这一新的流分析问题,提出一种基于Lp-norm的相似性度量L’p-norm,证明了L’p-norm度量具有对称性、增量性和限制阈值下的传递性特点.基于L’p-norm,提出一种有效降低两两计算次数,增量计算的高效互相似流群发现算法ESSG.实验表明,ESSG的运行效率适用于在线分析. To solve the new research problem of online discovery of mutual similar stream group in the area of data stream analysis, the paper put forwards a new similarity measure LI p-norm based on Lp-norm metrics, and shows its characteristic of symmetric, incremental computation and transitive with the limitation of threshold. Based on L' p-norm, an effective algorithm (ESSG) for mutual similar stream group discovery is proposed to reduce the computation of pair of streams and to achieve the incremental computation. With the extensive experiments, ESSG shows better performance applicable for online anaiysis.
出处 《小型微型计算机系统》 CSCD 北大核心 2007年第7期1245-1248,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60573090)资助 辽宁省自然科学基金项目资助
关键词 数据流 滑动窗口 相似性 data stream sliding window similarity
  • 相关文献

参考文献9

  • 1Faloutsos C,Ranganathan M,Manolopoulos Y.Fast subsequence matching in time-series databases[C].In:Proceedings of the 1994 ACM SIGMOD international conference on Management of data,1994,419-429.
  • 2Bulut A,Singh A K.Stardust:fast stream indexing using incremental wavelet approximations[C].In:Proceedings of the 29th VLDB Conference,2003.
  • 3Guha S,Gunopulos D,Koudas N.Correlating synchronous and asynchronous data stream[C].In:Proceedings of SIGKDD' 03 Conference,2003,529-534.
  • 4Sakurai Y,Papadimitriou S,Faloutsos C.BRAID:stream mining through group lag correlations[C].In:Proceedings of SIG-MOD' 05 Conference,2005,599-610.
  • 5Lian X,Chen L,Yu J X,et al.Similarity match over high speed time-series streams[C].In:Proceedings of ICDE' 07 Conference,To appear in 2007.
  • 6S&P500 historical stock exchange data[EB/OL].http://kumo.swcp.com/stocks,2004-12-31/2007-02-02.
  • 7Nasdaq historical stock exchange data[EB/OL].http://www.eoddata.com/download.asp,2006-01-09/2007-02-05.
  • 8Aggarwal C C,Hinneburg A,Keim D.On the surprising behavior of distance metrics in high dimensional space[C].The 8th Int'l Conf on Database Theory,2001,420-434.
  • 9杨雪梅,董逸生,徐宏炳,刘学军,钱江波,王永利.高维数据流的在线相关性分析[J].计算机研究与发展,2006,43(10):1744-1750. 被引量:9

二级参考文献11

  • 1朱文锋.创立以证素为核心的辨证新体系[J].湖南中医学院学报,2004,24(6):38-39. 被引量:303
  • 2徐仲 张凯院 陆全.矩阵论简明教程[M].北京:科学出版社,2002.140-143.
  • 3B Babcock,S Babu,M Datar,et al.Models and issues in data streams[C].In:Proc of the 21st ACM SIGACT-SIGMOD-SIGART Symp on Principles of Database Systems.New York:ACM Press,2002.1-16
  • 4B Ahmet,K S Ambuj.STARDUST:Fast stream indexing using incremental Wavelet approximations[C].The 29th VLDB Conference,Berlin,Germany,2003
  • 5B K Yi,N Sidiropoulos,T Johnson,et al.Online data mining for coevolving time sequences[C].ICDE 2000,Washington,DC,USA,2000
  • 6G Sudipto,G Dimitrios,K Nick.Correlating synchronous and asynchronous data streams[C].The ACM Int'l Conf on Knowledge Discovery and Data Mining (SIGKDD),Madison,Wisconsin,USA,2003
  • 7S Muthukrishnan.Data streams:Algorithms and applications[C].The 14th Annual ACM-SIAM Symp on Discrete Algorithms,Baltimore,Maryland,USA,2003
  • 8R A Johnson,D W Wichern.Applied Multivariate Statistical Analysis,3rd Edition[M].Englewood Cliffs,NJ:Prentice Hall,1992
  • 9F Alan,K Ravi,V Santosh.Fast Monte-Carlo algorithms for finding low-rank approximations[C].The 39th Annual Symp on Foundations of Computer Science,Palo Alto,CA,USA,1998
  • 10S&P500 historical stock exchange data[OL].http://kumo.swcp.com/stocks,2005-07-16/2005-07-27

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部