期刊文献+

基于最大熵模型与投票法的汉语动词与动词搭配识别 被引量:3

Chinese Verb-verb Collocation Recognition Based on Maximum Entropy Model and Voting
下载PDF
导出
摘要 提出一种基于最大熵模型和投票法的汉语动词与动词搭配识别方法.该方法通过组合目标动词与候选搭配词的上下文词性信息以及关联程度的统计信息构成5种复合特征模板,然后利用最大熵方法获得它们对应搭配识别器,最后采用最好搭配识别器占优的投票法构造组合识别器.实验结果表明,同时包含上下文词性信息和统计信息的识别器优于单纯包含上下文词性信息或统计信息的识别器,但最好搭配识别器占优的组合识别器效果更佳. In this paper,a method for verb-verb collocation recognition is proposed based on maximum entropy model and voting. Firstly, by combining some information about part of speech in context and the associations' strength between target verbs and candidate collocation verbs,5 kinds of composite feature templates are constructed. And then the corresponding discriminators are obtained by using maximum entropy model. Lastly,a combined discriminator is established by voting of the best dis- criminator priority. The experiment results indicate that discriminators with both information about part of speech in context and information about the strength of associations between target verbs and collocation verbs are more efficient than that only with single information respectively, however, the combined discriminator is the best.
出处 《小型微型计算机系统》 CSCD 北大核心 2007年第7期1306-1310,共5页 Journal of Chinese Computer Systems
基金 国家自然基金项目(60573074)资助 山西省自然科学基金项目(20041040)资助 山西省科技攻关项目(051129)资助 山西省青年科技基金项目(20031027)资助
关键词 搭配 最大熵模型 特征函数 投票法 collocation maximum ehtropy model feature function voting
  • 相关文献

参考文献4

二级参考文献32

  • 1孙茂松,黄昌宁,方捷.汉语搭配定量分析初探[J].中国语文,1997(1):29-38. 被引量:55
  • 2[1]Erik F, Tjong Kim Sang,Buchholz S. Introduction to the CoNLL-2000 Shared Task: Chunking. In: Proceedings of CoNLL2000 and LLL-2000, Lisbon, Portugal, 2000. 127~132
  • 3[2]Steven A. Parsing by Chunks. In: Berwick, Abney, Tenny eds. Principle-Based Parsing: Kluwer Academic Publishers,1991. 257~278
  • 4[5]Ratnaparkhi A. A maximum entropy model for part-of-speech tagging. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 1996
  • 5[6]Ratnaparkhi A. A simple introduction to maximum entropy models for natural language processing. Institute for Research in Cognitive Science, University of Pennsylvania : Technical Report 9708, 1997
  • 6[7]Berger A, Pietra S D, Pietra V D. A maximum entropy approach to natural language processing. Computational Linguistics, 1996,22(1):39~71
  • 7[8]Skut, Wojciech, Thorsten Brants. A maximum entropy partial parser for unrestricted text. In:Proceedings of the 6th Workshop on Very Large Corpora, Montreal, Canada, 1998. 143~151
  • 8[10]Abney S. Part-of-speech tagging and partial parsing. In:Church K, Young S, Bloothooft G eds. Corpus-Based Methods in Language and Speech, An ELSNET volume, Dordrecht:Kluwer Academic Publishers, 1996. 119~136
  • 9[11]Church K W. A stochastic parts program and noun phrase parser for unrestricted text. In:Proceedings of the 2nd Conference on Applied Natural Language Processing, Texas, USA, 1988.136~143
  • 10[12]Ramshaw L A, Marcus M P. Text chunking using transformation-based learning. In: Proceedings of ACL Third Workshop on Very Large Corpora, Cambridge, USA, 1995. 82~94

共引文献242

同被引文献29

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部