期刊文献+

混合序列的Cesaro强大数定律的收敛速度混合序列的Cesaro强大数定律的收敛速度

The Convergent Rate of Cesaro Strong Law of Large Numbers for -mixing Sequences
下载PDF
导出
摘要 讨论了混合序列的Cesaro强大数定律收敛速度,将i.i.d.的随机变量序列的情形推广到混合序列的情形,在一些命题和引理的前提下,获得了混合序列情形时的相应结论. In this paper, we discussed the convergent rate of cesaro strong law of large numbers for ρ↑-- mixiing sequences and we find some results in i. i. d- type can aslo be right in ρ↑-- mixing sequences . First, based on some properties of ρ↑-- mixing sequences , and discuss some sufficent conditions . At last, we obtained the results we want.
出处 《广西民族大学学报(自然科学版)》 CAS 2007年第2期55-58,共4页 Journal of Guangxi Minzu University :Natural Science Edition
基金 国家自然科技基金(10661006) 广西自然科学基金(0339071)
关键词 ρ↑-混合序列 Cesaro强大数定律 几乎处处收敛 ρ↑--mixing seqences Cesaro-type strong law of large numbers almost sure conergence
  • 相关文献

参考文献5

二级参考文献18

  • 1PELIGRAD M.Maximum of Partial Sums and an Invariance Principle for a Class Weak Depend Random Variables[J].Proc Amer Math Soci.1998,126(4):1181-1189.
  • 2PELIGRAD M,GUT A.Almost Sure Results for a Class of Dependent Random Variables[J].J Theoret Probab,1999,12:87-104.
  • 3BRADLEY R C.Eqnivalent Mixing Conditions for Random Fields[M].Chapel Hill:Technical Roport No.336,Center for Stochastic Processes,Univ of North Carolina,1990.
  • 4UTEV,S,PELIGRAD M.Maximal Inequalities and an Invariance Principle for a Class of Weakly Dependent Random Variables[J].J Theoret Probab,2003,(16):101-115.
  • 5Tandori K, Bemerkung fiber die parweise unabhangigen zufaHigen Groben, Acta Math. Hungar, 1986, 48:357-359.
  • 6Lehmann E. I, Some concepts of dependences Ann. Math. Statist, 1966, 43: 113-1153.
  • 7Lai T. L, Summability methods for i.i.d, random variables, Proc. Am. Math. Soc, 1974, 43: 253-261.
  • 8Chow Y. S. and Lai T. L, limiting behavior of weighted sums of independent random variables, Ann. Probab,1973, 1: 810-824.
  • 9Deniet Y. and Derriennic Y, Sur la convergence presque sfire, au sense de cesaro d'order a, 0< α< 1, devariables aleatoires independantes et identiquement distribuees, Probab. Rel. Fields, 1988, 79: 629-636.
  • 10Lorentz G. G, Borel and Banach propertied of methods of summation, Duke Math. J, 1955, 22: 129-141.

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部