期刊文献+

用于模式分类的支持向量机的研究 被引量:1

Research on Support Vector Machinefor Pattern Classification
下载PDF
导出
摘要 SVM在解决小样本、非线性及高维模式识别问题中表现出诸多特有的优势,结合模式分类,研究SVM的基本思想、训练算法及其应用,讨论海量样本数据的改进训练算法以及多类别分类方法等方面。 The advantage of SVM is to solve the small samples, non-linear and pattern recognition with high dimension. Researches on the basic thought of SVM for pattern recognition,discusses the improvements of training algorithm and multi-classification on large sample data.
出处 《现代计算机》 2007年第6期110-112,共3页 Modern Computer
关键词 支持向量机(SVM) 分类超平面 训练算法 Support Vector Machine(SVM) Optimal Separating Hyperplane Training Algorithm
  • 相关文献

参考文献6

  • 1Vapnik V.Statistical Learning Theory.New York John Wiley & Sons 1998
  • 2Osuna E,Freund R,Girosi F.Improved Training Algorithm for Support Vector Machines.Proccessing 7th IEEE Workshop onNeural Networks for Signal,IEEE,1997:276~285
  • 3T.Joachims,Making Large-Scale SVM Learning Practical.Advances in Kernel Methods-Support Vector Learning,B.Scholkopf and C.Burges and A.Smola(ed.),MIT-Press,1999:169~184
  • 4Platt J C.Sequential Minimal Optimization:A Fast Algorithm for Training Support Vector Machines.Advance in Kernel Methods-Support Vector Learning Cambridge,MA:MIT Press 1999:185~208
  • 5Bennett K,Blue J.A Support Vector Machine Approach to Decision Trees.Rensselaer Polytechnic Institute,Troy,NY:R.P.I Math Report,1997:97~100
  • 6LIU Zhi-gang,SHI Wen-zhong.Hierarchical Support Vector Machines Volume 1.25~29 July 2005:186~189

同被引文献12

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部